[论文]结合卷积神经网络和空间耦合低密度奇偶校验码的全息数据存储高效解码方法

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC ITE Transactions on Media Technology and Applications Pub Date : 2021-01-01 DOI:10.3169/mta.9.161
Yutaro Katano, Teruyoshi Nobukawa, Tetsuhiko Muroi, N. Kinoshita, Ishii Norihiko
{"title":"[论文]结合卷积神经网络和空间耦合低密度奇偶校验码的全息数据存储高效解码方法","authors":"Yutaro Katano, Teruyoshi Nobukawa, Tetsuhiko Muroi, N. Kinoshita, Ishii Norihiko","doi":"10.3169/mta.9.161","DOIUrl":null,"url":null,"abstract":"LDPC (SC-LDPC) code 15) is one of the strongest error correction codes that approaches the Shannon limit, based on the LDPC code 16) . We confirmed that the capability of error correction of the SC-LDPC code outperforms that of the LDPC code in the HDS 17) . This study presents an effective data-decoding method by combining the CNN demodulation and SC-LDPC code to enable a more powerful error correction by using the likelihood information obtained as the output from the CNN. We evaluated the characteristics of the demodulation and error correction method using the reproduced data with numerically added noise. Abstract In this study, we propose an effective data-decoding method for holographic data storage (HDS) by combining convolutional neural network (CNN) and spatially coupled low-density parity-check (SC-LDPC) code. The trained CNN provides output class probabilities and accurately demodulates the reproduced data from HDS. We focus on these probabilities, wherein only the untrainable noise components such as white Gaussian noise remain. These are used for calculating the log likelihood ratio in the sum-product decoding for the SC-LDPC code. We demonstrate an improvement of approximately 10 dB in the required signal-to-noise ratio for an error-free decoding in numerical simulations.","PeriodicalId":41874,"journal":{"name":"ITE Transactions on Media Technology and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"[Paper] Efficient Decoding Method for Holographic Data Storage Combining Convolutional Neural Network and Spatially Coupled Low-Density Parity-Check Code\",\"authors\":\"Yutaro Katano, Teruyoshi Nobukawa, Tetsuhiko Muroi, N. Kinoshita, Ishii Norihiko\",\"doi\":\"10.3169/mta.9.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LDPC (SC-LDPC) code 15) is one of the strongest error correction codes that approaches the Shannon limit, based on the LDPC code 16) . We confirmed that the capability of error correction of the SC-LDPC code outperforms that of the LDPC code in the HDS 17) . This study presents an effective data-decoding method by combining the CNN demodulation and SC-LDPC code to enable a more powerful error correction by using the likelihood information obtained as the output from the CNN. We evaluated the characteristics of the demodulation and error correction method using the reproduced data with numerically added noise. Abstract In this study, we propose an effective data-decoding method for holographic data storage (HDS) by combining convolutional neural network (CNN) and spatially coupled low-density parity-check (SC-LDPC) code. The trained CNN provides output class probabilities and accurately demodulates the reproduced data from HDS. We focus on these probabilities, wherein only the untrainable noise components such as white Gaussian noise remain. These are used for calculating the log likelihood ratio in the sum-product decoding for the SC-LDPC code. We demonstrate an improvement of approximately 10 dB in the required signal-to-noise ratio for an error-free decoding in numerical simulations.\",\"PeriodicalId\":41874,\"journal\":{\"name\":\"ITE Transactions on Media Technology and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITE Transactions on Media Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3169/mta.9.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITE Transactions on Media Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3169/mta.9.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3

摘要

LDPC (SC-LDPC)码15)是基于LDPC码16的接近香农极限的最强纠错码之一。我们证实SC-LDPC码的纠错能力优于HDS中的LDPC码(17)。本研究提出了一种有效的数据解码方法,将CNN解调与SC-LDPC编码相结合,利用CNN的输出获得的似然信息进行更强大的纠错。利用数值加噪的再现数据,评价了解调和误差校正方法的特性。本文提出了一种将卷积神经网络(CNN)与空间耦合低密度奇偶校验(SC-LDPC)码相结合的全息数据存储(HDS)的有效数据解码方法。训练后的CNN提供输出类概率,并准确解调来自HDS的再现数据。我们关注这些概率,其中只有不可训练的噪声成分,如高斯白噪声仍然存在。这些用于计算SC-LDPC码的和积解码中的对数似然比。我们在数值模拟中证明了在无错误解码所需的信噪比中提高了大约10 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Paper] Efficient Decoding Method for Holographic Data Storage Combining Convolutional Neural Network and Spatially Coupled Low-Density Parity-Check Code
LDPC (SC-LDPC) code 15) is one of the strongest error correction codes that approaches the Shannon limit, based on the LDPC code 16) . We confirmed that the capability of error correction of the SC-LDPC code outperforms that of the LDPC code in the HDS 17) . This study presents an effective data-decoding method by combining the CNN demodulation and SC-LDPC code to enable a more powerful error correction by using the likelihood information obtained as the output from the CNN. We evaluated the characteristics of the demodulation and error correction method using the reproduced data with numerically added noise. Abstract In this study, we propose an effective data-decoding method for holographic data storage (HDS) by combining convolutional neural network (CNN) and spatially coupled low-density parity-check (SC-LDPC) code. The trained CNN provides output class probabilities and accurately demodulates the reproduced data from HDS. We focus on these probabilities, wherein only the untrainable noise components such as white Gaussian noise remain. These are used for calculating the log likelihood ratio in the sum-product decoding for the SC-LDPC code. We demonstrate an improvement of approximately 10 dB in the required signal-to-noise ratio for an error-free decoding in numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ITE Transactions on Media Technology and Applications
ITE Transactions on Media Technology and Applications ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
1.70
自引率
0.00%
发文量
9
期刊介绍: ・Multimedia systems and applications ・Multimedia analysis and processing ・Universal services ・Advanced broadcasting media ・Broadcasting network technology ・Contents production ・CG and multimedia representation ・Consumer Electronics ・3D imaging technology ・Human Information ・Image sensing ・Information display ・Multimedia Storage ・Others.
期刊最新文献
[Paper] A 2-Tap 4-Phase Indirect Time-of-Flight Ranging Method using Half-Pulse Modulation for Depth Precision Enhancement and Sub-Frame Operation for Motion Artifact Suppression [Paper] Study on Single Frequency Downlink with Coupling Loop Interference Canceller for Professional SC-FDE Wireless Camera using Millimeter-wave Band [Paper] Memory Bandwidth Constrained Overlapped Block Motion Compensation for Video Coding [Foreword] Welcome to the Special Section on Invited Papers of Media Technology and Applications [Invited Paper] Pressure Change Simulation along Blood Flow in the Left Ventricle and the Aorta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1