线性反问题的乘子交替方向法与条件梯度全变分法

A. Bentbib, A. Bouhamidi, K. Kreit
{"title":"线性反问题的乘子交替方向法与条件梯度全变分法","authors":"A. Bentbib, A. Bouhamidi, K. Kreit","doi":"10.32523/2306-6172-2023-11-2-4-39","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the ill-posed problem using total variation regularization. To solve such a problem, we use an alternating direction method of multipliers to split our problem into two sub-problems. The novelty of our paper is in the use of the conditional gradient total variation method (CGTV) we have recently introduced. The second split- ting sub-problem is solved by transforming the obtained optimization problem to a general Sylvester matrix equation and then an orthogonal projection method is used to solve the obtained matrix equation. We give proof of the convergence of this method. Some numerical examples and applications to image restoration are given to illustrate the effectiveness of the proposed method.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN ALTERNATING DIRECTION METHOD OF MULTIPLIERS WITH THE CONDITIONAL GRADIENT TOTAL VARIATION METHOD FOR LINEAR INVERSE PROBLEMS\",\"authors\":\"A. Bentbib, A. Bouhamidi, K. Kreit\",\"doi\":\"10.32523/2306-6172-2023-11-2-4-39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the ill-posed problem using total variation regularization. To solve such a problem, we use an alternating direction method of multipliers to split our problem into two sub-problems. The novelty of our paper is in the use of the conditional gradient total variation method (CGTV) we have recently introduced. The second split- ting sub-problem is solved by transforming the obtained optimization problem to a general Sylvester matrix equation and then an orthogonal projection method is used to solve the obtained matrix equation. We give proof of the convergence of this method. Some numerical examples and applications to image restoration are given to illustrate the effectiveness of the proposed method.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2023-11-2-4-39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2023-11-2-4-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文用全变分正则化方法研究了一类病态问题。为了解决这样的问题,我们使用乘法器的交替方向方法将问题分成两个子问题。本文的新颖之处在于使用了我们最近介绍的条件梯度总变分法(CGTV)。将得到的优化问题转化为一般的Sylvester矩阵方程,然后用正交投影法对得到的矩阵方程进行求解。给出了该方法的收敛性证明。通过数值算例和在图像恢复中的应用,说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
AN ALTERNATING DIRECTION METHOD OF MULTIPLIERS WITH THE CONDITIONAL GRADIENT TOTAL VARIATION METHOD FOR LINEAR INVERSE PROBLEMS
Abstract In this paper, we study the ill-posed problem using total variation regularization. To solve such a problem, we use an alternating direction method of multipliers to split our problem into two sub-problems. The novelty of our paper is in the use of the conditional gradient total variation method (CGTV) we have recently introduced. The second split- ting sub-problem is solved by transforming the obtained optimization problem to a general Sylvester matrix equation and then an orthogonal projection method is used to solve the obtained matrix equation. We give proof of the convergence of this method. Some numerical examples and applications to image restoration are given to illustrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1