推荐系统的知识图表示推理

Tao Li, Hao Li, Sheng Zhong, Yan Kang, Yachuan Zhang, Rongjing Bu, Yang Hu
{"title":"推荐系统的知识图表示推理","authors":"Tao Li, Hao Li, Sheng Zhong, Yan Kang, Yachuan Zhang, Rongjing Bu, Yang Hu","doi":"10.32604/jnm.2020.09767","DOIUrl":null,"url":null,"abstract":": In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms, we propose an efficient KGRS model. KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm, then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning, then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning. Finally, through the full connection layer and sigmoid function to get the prediction ratings, and the items are sorted according to the prediction ratings to get the user’s recommendation list. KGRS is tested on the movielens-100k dataset. Compared with the related representative algorithm, including the state-of-the-art interpretable recommendation models RKGE and RippleNet, the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy.","PeriodicalId":69198,"journal":{"name":"新媒体杂志(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Knowledge Graph Representation Reasoning for Recommendation System\",\"authors\":\"Tao Li, Hao Li, Sheng Zhong, Yan Kang, Yachuan Zhang, Rongjing Bu, Yang Hu\",\"doi\":\"10.32604/jnm.2020.09767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms, we propose an efficient KGRS model. KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm, then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning, then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning. Finally, through the full connection layer and sigmoid function to get the prediction ratings, and the items are sorted according to the prediction ratings to get the user’s recommendation list. KGRS is tested on the movielens-100k dataset. Compared with the related representative algorithm, including the state-of-the-art interpretable recommendation models RKGE and RippleNet, the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy.\",\"PeriodicalId\":69198,\"journal\":{\"name\":\"新媒体杂志(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"新媒体杂志(英文)\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.32604/jnm.2020.09767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"新媒体杂志(英文)","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.32604/jnm.2020.09767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对现有协同过滤推荐算法可解释性较低以及从基于内容的推荐算法中提取信息困难的问题,提出了一种高效的KGRS模型。KGRS首先获取知识图的推理路径,并基于知识表示学习TransD算法将路径实体嵌入到向量中,然后利用LSTM和软注意机制捕获每条路径推理的语义,然后利用卷积运算和池化运算区分不同路径推理的重要性。最后,通过全连接层和sigmoid函数得到预测评分,并根据预测评分对项目进行排序,得到用户推荐列表。KGRS在movielens-100k数据集上进行了测试。实验结果表明,与RKGE和RippleNet等具有代表性的可解释性推荐模型相比,KGRS具有较好的推荐解释性和较高的推荐准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge Graph Representation Reasoning for Recommendation System
: In view of the low interpretability of existing collaborative filtering recommendation algorithms and the difficulty of extracting information from content-based recommendation algorithms, we propose an efficient KGRS model. KGRS first obtains reasoning paths of knowledge graph and embeds the entities of paths into vectors based on knowledge representation learning TransD algorithm, then uses LSTM and soft attention mechanism to capture the semantic of each path reasoning, then uses convolution operation and pooling operation to distinguish the importance of different paths reasoning. Finally, through the full connection layer and sigmoid function to get the prediction ratings, and the items are sorted according to the prediction ratings to get the user’s recommendation list. KGRS is tested on the movielens-100k dataset. Compared with the related representative algorithm, including the state-of-the-art interpretable recommendation models RKGE and RippleNet, the experimental results show that KGRS has good recommendation interpretation and higher recommendation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review of Visible-Infrared Cross-Modality Person Re-Identification Accurate Machine Learning Predictions of Sci-Fi Film Performance The Review of Secret Image Sharing Research on Parking Path Planing Based on A-Star Algorithm Cost Efficient Automated Fog Spraying Machine: A Covid-19 Hand Sanitization Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1