注浆模袋桩挡土墙的力学性能及变形特性

Shengcai Li, Jun Tang, Lin Guo
{"title":"注浆模袋桩挡土墙的力学性能及变形特性","authors":"Shengcai Li, Jun Tang, Lin Guo","doi":"10.32604/sdhm.2019.06058","DOIUrl":null,"url":null,"abstract":"The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring, surface horizontal displacement and vertical displacement monitoring, deep horizontal displacement (inclinometer) monitoring, soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi, Fujian Province. The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared. The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement, so that it can rock into a retaining wall, which can both retain soil and seal water with excellent effect. The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile, but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction; and its cohesion and internal friction angle increased, so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall.","PeriodicalId":35399,"journal":{"name":"SDHM Structural Durability and Health Monitoring","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mechanical Behaviors and Deformation Properties of Retaining Wall Formed by Grouting Mould-Bag Pile\",\"authors\":\"Shengcai Li, Jun Tang, Lin Guo\",\"doi\":\"10.32604/sdhm.2019.06058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring, surface horizontal displacement and vertical displacement monitoring, deep horizontal displacement (inclinometer) monitoring, soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi, Fujian Province. The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared. The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement, so that it can rock into a retaining wall, which can both retain soil and seal water with excellent effect. The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile, but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction; and its cohesion and internal friction angle increased, so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall.\",\"PeriodicalId\":35399,\"journal\":{\"name\":\"SDHM Structural Durability and Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SDHM Structural Durability and Health Monitoring\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/sdhm.2019.06058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SDHM Structural Durability and Health Monitoring","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/sdhm.2019.06058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

根据福建省石市武安河下游治理工程注浆桩变形监测、地表水平位移和垂直位移监测、深层水平位移(测斜仪)监测、土压力监测和渗流压力监测的实测结果和分析,建立了简化力学模型和有限元模型。对试验段粉质地层中控制水泥灌浆后形成的模袋桩挡土墙的力学性能和变形性能进行了分析比较。结果表明:采用控制水泥灌浆模袋桩技术对软地层进行加固止水加固,使其岩成挡土墙,既保土又止水,效果优异。水泥灌浆技术的控制不仅使模袋桩挡土墙范围内的软土岩石,而且使模袋桩周围大范围的土体被挤嵌压实;其黏聚力和内摩擦角增大,从而达到减小土压力,改善挡土墙力学变形性能的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical Behaviors and Deformation Properties of Retaining Wall Formed by Grouting Mould-Bag Pile
The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring, surface horizontal displacement and vertical displacement monitoring, deep horizontal displacement (inclinometer) monitoring, soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi, Fujian Province. The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared. The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement, so that it can rock into a retaining wall, which can both retain soil and seal water with excellent effect. The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile, but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction; and its cohesion and internal friction angle increased, so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SDHM Structural Durability and Health Monitoring
SDHM Structural Durability and Health Monitoring Engineering-Building and Construction
CiteScore
2.40
自引率
0.00%
发文量
29
期刊介绍: In order to maintain a reasonable cost for large scale structures such as airframes, offshore structures, nuclear plants etc., it is generally accepted that improved methods for structural integrity and durability assessment are required. Structural Health Monitoring (SHM) had emerged as an active area of research for fatigue life and damage accumulation prognostics. This is important for design and maintains of new and ageing structures.
期刊最新文献
Impact Damage Identification of Aluminum Alloy Reinforced Plate Based on GWO-ELM Algorithm Low-Strain Damage Imaging Detection Experiment for Model Pile Integrity Based on HHT Paradigm of Numerical Simulation of Spatial Wind Field for Disaster Prevention of Transmission Tower Lines A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response An Analysis of the Dynamic Behavior of Damaged Reinforced Concrete Bridges under Moving Vehicle Loads by Using the Moving Mesh Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1