利用并行GPU加速分层分布式潜狄利克雷分配算法:利用并行GPU加速分层分布式潜狄利克雷分配算法

La Wen, J. Rui, Tingting He, Liang Guo
{"title":"利用并行GPU加速分层分布式潜狄利克雷分配算法:利用并行GPU加速分层分布式潜狄利克雷分配算法","authors":"La Wen, J. Rui, Tingting He, Liang Guo","doi":"10.3724/SP.J.1087.2013.03313","DOIUrl":null,"url":null,"abstract":"Hierarchical Distributed Latent Dirichlet Allocation(HD-LDA),a popular topic modeling technique for exploring collections,is an improved Latent Dirichlet Allocation(LDA) algorithm running in distributed environment. Mahout has realized HD-LDA algorithm in the framework of Hadoop. However the algorithm processed the whole documents of a single node in sequence,and the execution time of the HD-LDA program was very long when processing a large amount of documents. A new method was proposed to combine Hadoop with Graphic Processing Unit(GPU) to solve the above problem when transferring the computation from CPU to GPU. The application results show that combining the Hadoop with GPU which processes many documents in parallel can decrease the execution time of HD-LDA program greatly and achieve seven times speedup.","PeriodicalId":61778,"journal":{"name":"计算机应用","volume":"33 1","pages":"3313-3316"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerating hierarchical distributed latent Dirichlet allocation algorithm by parallel GPU: Accelerating hierarchical distributed latent Dirichlet allocation algorithm by parallel GPU\",\"authors\":\"La Wen, J. Rui, Tingting He, Liang Guo\",\"doi\":\"10.3724/SP.J.1087.2013.03313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical Distributed Latent Dirichlet Allocation(HD-LDA),a popular topic modeling technique for exploring collections,is an improved Latent Dirichlet Allocation(LDA) algorithm running in distributed environment. Mahout has realized HD-LDA algorithm in the framework of Hadoop. However the algorithm processed the whole documents of a single node in sequence,and the execution time of the HD-LDA program was very long when processing a large amount of documents. A new method was proposed to combine Hadoop with Graphic Processing Unit(GPU) to solve the above problem when transferring the computation from CPU to GPU. The application results show that combining the Hadoop with GPU which processes many documents in parallel can decrease the execution time of HD-LDA program greatly and achieve seven times speedup.\",\"PeriodicalId\":61778,\"journal\":{\"name\":\"计算机应用\",\"volume\":\"33 1\",\"pages\":\"3313-3316\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机应用\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.3724/SP.J.1087.2013.03313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机应用","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.3724/SP.J.1087.2013.03313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分层分布式潜狄利克雷分配(HD-LDA)是一种基于分布式环境的潜狄利克雷分配(LDA)算法的改进,是一种流行的用于探索集合的主题建模技术。Mahout在Hadoop框架下实现了HD-LDA算法。然而,该算法是按顺序处理单个节点的全部文档,在处理大量文档时,HD-LDA程序的执行时间非常长。提出了一种将Hadoop与图形处理单元(GPU)相结合的新方法,以解决将计算从CPU转移到GPU时的上述问题。应用结果表明,将Hadoop与并行处理大量文档的GPU相结合,可以大大减少HD-LDA程序的执行时间,并实现7倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating hierarchical distributed latent Dirichlet allocation algorithm by parallel GPU: Accelerating hierarchical distributed latent Dirichlet allocation algorithm by parallel GPU
Hierarchical Distributed Latent Dirichlet Allocation(HD-LDA),a popular topic modeling technique for exploring collections,is an improved Latent Dirichlet Allocation(LDA) algorithm running in distributed environment. Mahout has realized HD-LDA algorithm in the framework of Hadoop. However the algorithm processed the whole documents of a single node in sequence,and the execution time of the HD-LDA program was very long when processing a large amount of documents. A new method was proposed to combine Hadoop with Graphic Processing Unit(GPU) to solve the above problem when transferring the computation from CPU to GPU. The application results show that combining the Hadoop with GPU which processes many documents in parallel can decrease the execution time of HD-LDA program greatly and achieve seven times speedup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
23274
期刊介绍:
期刊最新文献
The Modeling and Simulation of Constellation Availability Based on Satellite Reliability Energy-saving optimization in datacenter based on virtual machine scheduling: Energy-saving optimization in datacenter based on virtual machine scheduling Approach of large matrix multiplication based on Hadoop: Approach of large matrix multiplication based on Hadoop Massive medical image retrieval system based on Hadoop: Massive medical image retrieval system based on Hadoop Accelerating hierarchical distributed latent Dirichlet allocation algorithm by parallel GPU: Accelerating hierarchical distributed latent Dirichlet allocation algorithm by parallel GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1