高斯样本的最优匹配[j]

IF 0.4 4区 数学 Q4 STATISTICS & PROBABILITY Probability and Mathematical Statistics-Poland Pub Date : 2019-11-18 DOI:10.37190/0208-4147.41.2.3
M. Ledoux, Jie-Xiang Zhu
{"title":"高斯样本的最优匹配[j]","authors":"M. Ledoux, Jie-Xiang Zhu","doi":"10.37190/0208-4147.41.2.3","DOIUrl":null,"url":null,"abstract":"This article is a continuation of the papers [8,9] in which the optimal matching problem, and the related rates of convergence of empirical measures for Gaussian samples are addressed. A further step in both the dimensional and Kantorovich parameters is achieved here, proving that, given $X_1, \\ldots, X_n$ independent random variables with common distribution the standard Gaussian measure $\\mu$ on $\\mathbb{R}^d$, $d \\geq 3$, and $\\mu_n \\, = \\, \\frac 1n \\sum_{i=1}^n \\delta_{X_i}$ the associated empirical measure, $$ \n\\mathbb{E} \\big( \\mathrm {W}_p^p (\\mu_n , \\mu )\\big ) \\, \\approx \\, \\frac {1}{n^{p/d}} $$ for any $1\\leq p < d$, where $\\mathrm {W}_p$ is the $p$-th Kantorovich metric. The proof relies on the pde and mass transportation approach developed by L. Ambrosio, F. Stra and D. Trevisan in a compact setting.","PeriodicalId":48996,"journal":{"name":"Probability and Mathematical Statistics-Poland","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"On optimal matching of Gaussian samples III\",\"authors\":\"M. Ledoux, Jie-Xiang Zhu\",\"doi\":\"10.37190/0208-4147.41.2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is a continuation of the papers [8,9] in which the optimal matching problem, and the related rates of convergence of empirical measures for Gaussian samples are addressed. A further step in both the dimensional and Kantorovich parameters is achieved here, proving that, given $X_1, \\\\ldots, X_n$ independent random variables with common distribution the standard Gaussian measure $\\\\mu$ on $\\\\mathbb{R}^d$, $d \\\\geq 3$, and $\\\\mu_n \\\\, = \\\\, \\\\frac 1n \\\\sum_{i=1}^n \\\\delta_{X_i}$ the associated empirical measure, $$ \\n\\\\mathbb{E} \\\\big( \\\\mathrm {W}_p^p (\\\\mu_n , \\\\mu )\\\\big ) \\\\, \\\\approx \\\\, \\\\frac {1}{n^{p/d}} $$ for any $1\\\\leq p < d$, where $\\\\mathrm {W}_p$ is the $p$-th Kantorovich metric. The proof relies on the pde and mass transportation approach developed by L. Ambrosio, F. Stra and D. Trevisan in a compact setting.\",\"PeriodicalId\":48996,\"journal\":{\"name\":\"Probability and Mathematical Statistics-Poland\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability and Mathematical Statistics-Poland\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37190/0208-4147.41.2.3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability and Mathematical Statistics-Poland","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.41.2.3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 15

摘要

本文是论文[8,9]的延续,其中讨论了高斯样本的经验测度的最优匹配问题和相关的收敛率。在维数和坎托洛维奇参数的进一步步骤在这里实现,证明,给定 $X_1, \ldots, X_n$ 具有共同分布的标准高斯测度的独立随机变量 $\mu$ on $\mathbb{R}^d$, $d \geq 3$,和 $\mu_n \, = \, \frac 1n \sum_{i=1}^n \delta_{X_i}$ 相关的经验测量, $$ \mathbb{E} \big( \mathrm {W}_p^p (\mu_n , \mu )\big ) \, \approx \, \frac {1}{n^{p/d}} $$ 对于任何 $1\leq p < d$,其中 $\mathrm {W}_p$ 是? $p$-康托罗维奇度规。证据依赖于L. Ambrosio, F. Stra和D. Trevisan在紧凑环境中开发的pde和大众运输方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On optimal matching of Gaussian samples III
This article is a continuation of the papers [8,9] in which the optimal matching problem, and the related rates of convergence of empirical measures for Gaussian samples are addressed. A further step in both the dimensional and Kantorovich parameters is achieved here, proving that, given $X_1, \ldots, X_n$ independent random variables with common distribution the standard Gaussian measure $\mu$ on $\mathbb{R}^d$, $d \geq 3$, and $\mu_n \, = \, \frac 1n \sum_{i=1}^n \delta_{X_i}$ the associated empirical measure, $$ \mathbb{E} \big( \mathrm {W}_p^p (\mu_n , \mu )\big ) \, \approx \, \frac {1}{n^{p/d}} $$ for any $1\leq p < d$, where $\mathrm {W}_p$ is the $p$-th Kantorovich metric. The proof relies on the pde and mass transportation approach developed by L. Ambrosio, F. Stra and D. Trevisan in a compact setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: PROBABILITY AND MATHEMATICAL STATISTICS is published by the Kazimierz Urbanik Center for Probability and Mathematical Statistics, and is sponsored jointly by the Faculty of Mathematics and Computer Science of University of Wrocław and the Faculty of Pure and Applied Mathematics of Wrocław University of Science and Technology. The purpose of the journal is to publish original contributions to the theory of probability and mathematical statistics.
期刊最新文献
Estimation by Stable Motions and its Applications Fractional Stochastic Differential Equations Driven By G-Brownian Motion with Delays Limit theorems for a higher order time dependent Markov chain model Ground-state representation for fractional Laplacian on half-line Moment inequalities for nonnegative random variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1