多产品EPQ问题的延迟微分、加速速率和报废的数学建模

S. Chiu, Jianwei Lin, Yunsen Wang, Hong-Dar Lin
{"title":"多产品EPQ问题的延迟微分、加速速率和报废的数学建模","authors":"S. Chiu, Jianwei Lin, Yunsen Wang, Hong-Dar Lin","doi":"10.31534/engmod.2020.3-4.ri.05v","DOIUrl":null,"url":null,"abstract":"The client requirements of present-day markets emphasize product quality, variety, and rapid response. To gain competitive advantages in marketplaces and meet customer needs, manufacturers today seek the most economical and fastest fabrication schemes and strategies to produce their various goods, especially when commonality exists within these multiple end products. Inspired by the above viewpoints, this study uses a mathematical modelling approach for solving a multiproduct economic production quantity (EPQ) problem featuring scrap, delayed differentiation, and expedited rate on the fabrication of the common part. We build a two-stage multiproduct fabrication scheme. Stage one uses an accelerated rate to produce all necessary common parts for multi-item to shorten its uptime, while stage two fabricates finished products sequentially using a rotation cycle rule. Inevitable random scraps produced in both stages are identified and removed to achieve the anticipated quality. We determined the optimal cost-minimization operating cycle length and used a numerical example to show our model’s capability and to explore collective and individual impacts of scrap, expedited-rate, and postponement strategies on various performances of the studied problem (such as uptime of common part, utilization, rotation cycle time, total system cost, and individual cost contributor, etc.) Our model can offer an optimization solution and in-depth managerial insights for fabrication and operations planning in a wide variety of present-day industries, such as household goods, clothing, etc.","PeriodicalId":35748,"journal":{"name":"International Journal for Engineering Modelling","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mathematical modelling for multiproduct EPQ problem featuring delayed differentiation, expedited rate, and scrap\",\"authors\":\"S. Chiu, Jianwei Lin, Yunsen Wang, Hong-Dar Lin\",\"doi\":\"10.31534/engmod.2020.3-4.ri.05v\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The client requirements of present-day markets emphasize product quality, variety, and rapid response. To gain competitive advantages in marketplaces and meet customer needs, manufacturers today seek the most economical and fastest fabrication schemes and strategies to produce their various goods, especially when commonality exists within these multiple end products. Inspired by the above viewpoints, this study uses a mathematical modelling approach for solving a multiproduct economic production quantity (EPQ) problem featuring scrap, delayed differentiation, and expedited rate on the fabrication of the common part. We build a two-stage multiproduct fabrication scheme. Stage one uses an accelerated rate to produce all necessary common parts for multi-item to shorten its uptime, while stage two fabricates finished products sequentially using a rotation cycle rule. Inevitable random scraps produced in both stages are identified and removed to achieve the anticipated quality. We determined the optimal cost-minimization operating cycle length and used a numerical example to show our model’s capability and to explore collective and individual impacts of scrap, expedited-rate, and postponement strategies on various performances of the studied problem (such as uptime of common part, utilization, rotation cycle time, total system cost, and individual cost contributor, etc.) Our model can offer an optimization solution and in-depth managerial insights for fabrication and operations planning in a wide variety of present-day industries, such as household goods, clothing, etc.\",\"PeriodicalId\":35748,\"journal\":{\"name\":\"International Journal for Engineering Modelling\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Engineering Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31534/engmod.2020.3-4.ri.05v\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Engineering Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31534/engmod.2020.3-4.ri.05v","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

当今市场的客户要求强调产品质量、品种和快速反应。为了在市场上获得竞争优势并满足客户需求,制造商今天寻求最经济,最快速的制造方案和策略来生产各种商品,特别是当这些多种终端产品存在共性时。受上述观点的启发,本研究采用数学建模的方法,求解公共零件制造过程中存在报废、延迟差异化和加速率的多产品经济生产数量问题。我们建立了一个两阶段的多产品制造方案。第一阶段使用加速速率生产多个项目所需的所有公共部件,以缩短其正常运行时间,而第二阶段使用旋转周期规则依次制造成品。在两个阶段产生的不可避免的随机废料被识别和去除,以达到预期的质量。我们确定了最优的成本最小化运行周期长度,并使用一个数值例子来展示我们的模型的能力,并探讨了报废、加速率和延迟策略对所研究问题的各种性能(如公共部件的正常运行时间、利用率、旋转周期时间、系统总成本和单个成本贡献者)的集体和个体影响。我们的模型可以提供优化解决方案和深入的管理见解,为制造和运营计划在各种各样的当今行业,如家居用品,服装等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical modelling for multiproduct EPQ problem featuring delayed differentiation, expedited rate, and scrap
The client requirements of present-day markets emphasize product quality, variety, and rapid response. To gain competitive advantages in marketplaces and meet customer needs, manufacturers today seek the most economical and fastest fabrication schemes and strategies to produce their various goods, especially when commonality exists within these multiple end products. Inspired by the above viewpoints, this study uses a mathematical modelling approach for solving a multiproduct economic production quantity (EPQ) problem featuring scrap, delayed differentiation, and expedited rate on the fabrication of the common part. We build a two-stage multiproduct fabrication scheme. Stage one uses an accelerated rate to produce all necessary common parts for multi-item to shorten its uptime, while stage two fabricates finished products sequentially using a rotation cycle rule. Inevitable random scraps produced in both stages are identified and removed to achieve the anticipated quality. We determined the optimal cost-minimization operating cycle length and used a numerical example to show our model’s capability and to explore collective and individual impacts of scrap, expedited-rate, and postponement strategies on various performances of the studied problem (such as uptime of common part, utilization, rotation cycle time, total system cost, and individual cost contributor, etc.) Our model can offer an optimization solution and in-depth managerial insights for fabrication and operations planning in a wide variety of present-day industries, such as household goods, clothing, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Engineering Modelling
International Journal for Engineering Modelling Engineering-Mechanical Engineering
CiteScore
0.90
自引率
0.00%
发文量
12
期刊介绍: Engineering Modelling is a refereed international journal providing an up-to-date reference for the engineers and researchers engaged in computer aided analysis, design and research in the fields of computational mechanics, numerical methods, software develop-ment and engineering modelling.
期刊最新文献
Modelling a Contention-Based Wireless MAC Protocol with EDCA Countdown and Constrained Priority Freezing Analysis of Stress Intensity Factor in a Cracked Plate Vibratory Conveying by Normal Oscillations with Piecewise Constant Acceleration and Longitudinal Harmonic Oscillations Performance of Multiscale Hydrodynamic Step Bearing with Inhomogeneous Surfaces Pre-modeling by Arc Hydro Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1