无机液体超声辅助轻气油脱硫研究

IF 0.5 4区 环境科学与生态学 Q4 ENGINEERING, ENVIRONMENTAL Environment Protection Engineering Pub Date : 2019-01-01 DOI:10.37190/epe190401
Luma H. Mahmood, M. Abid, M. I. Mohammed
{"title":"无机液体超声辅助轻气油脱硫研究","authors":"Luma H. Mahmood, M. Abid, M. I. Mohammed","doi":"10.37190/epe190401","DOIUrl":null,"url":null,"abstract":"The feasibility of removing sulfur from real light gas oil using inorganic liquids (NaOH, Ca(OH) 2 and HCl) at various concentrations assisted with ultrasonication was investigated in a continuous flow setup. Experimental results showed that at the optimum operating time (40 min), 68% of sulfur was removed under mild conditions using 10 wt. % NaOH. Ultrasonication not only facilitated sulfur removal but also improved gas oil properties by decreasing density and viscosity by 1.40 and 4.42%, respectively, while the cetane number ( CN ) was increased by 7.0%. Solute selectivity ( S ) depending on sulfur mole fraction ( x S ) was correlated using StatPlus 6.7.1.0 software and the following values have been obtained: S = 53.869e –2.552 x S , and S = 29.573 – 41.878 x s for mixtures of 10% Ca(OH) 2 + S-compound + oil, and 10% NaOH + S-compound + oil, respectively. The correlation coefficients ( R 2 ) for the above equations were 0.9813 and 0.9611, respectively. An empirical correlation related to sulfur removal as a function of processing time and solvent concentration was found with R 2 = 0.956. The results of the present work confirmed the feasibility of employing the hybrid method of ultrasonication with using alkaline liquids for sulfur removal.","PeriodicalId":11709,"journal":{"name":"Environment Protection Engineering","volume":"142 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study on ultrasound assisted desulfurization of light gas oil using inorganic liquid\",\"authors\":\"Luma H. Mahmood, M. Abid, M. I. Mohammed\",\"doi\":\"10.37190/epe190401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The feasibility of removing sulfur from real light gas oil using inorganic liquids (NaOH, Ca(OH) 2 and HCl) at various concentrations assisted with ultrasonication was investigated in a continuous flow setup. Experimental results showed that at the optimum operating time (40 min), 68% of sulfur was removed under mild conditions using 10 wt. % NaOH. Ultrasonication not only facilitated sulfur removal but also improved gas oil properties by decreasing density and viscosity by 1.40 and 4.42%, respectively, while the cetane number ( CN ) was increased by 7.0%. Solute selectivity ( S ) depending on sulfur mole fraction ( x S ) was correlated using StatPlus 6.7.1.0 software and the following values have been obtained: S = 53.869e –2.552 x S , and S = 29.573 – 41.878 x s for mixtures of 10% Ca(OH) 2 + S-compound + oil, and 10% NaOH + S-compound + oil, respectively. The correlation coefficients ( R 2 ) for the above equations were 0.9813 and 0.9611, respectively. An empirical correlation related to sulfur removal as a function of processing time and solvent concentration was found with R 2 = 0.956. The results of the present work confirmed the feasibility of employing the hybrid method of ultrasonication with using alkaline liquids for sulfur removal.\",\"PeriodicalId\":11709,\"journal\":{\"name\":\"Environment Protection Engineering\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment Protection Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.37190/epe190401\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment Protection Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.37190/epe190401","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 2

摘要

在连续流动装置中,研究了超声波辅助下不同浓度的无机液体(NaOH、Ca(OH) 2和HCl)脱除实际轻质油中硫的可行性。实验结果表明,在最佳操作时间(40 min)下,使用10 wt. %的NaOH,在温和条件下,硫的去除率为68%。超声处理不仅有利于脱硫,而且改善了气相油的性能,密度和粘度分别降低了1.40%和4.42%,十六烷值(CN)提高了7.0%。利用StatPlus 6.7.1.0软件对硫摩尔分数(x S)的溶质选择性(S)进行了相关性分析,得到了10% Ca(OH) 2 + S-化合物+油和10% NaOH + S-化合物+油的溶质选择性S = 53.869e - 2.552 x S和S = 29.573 - 41.878 x S。上述方程的相关系数(r2)分别为0.9813和0.9611。硫的去除与处理时间和溶剂浓度有经验相关,r2 = 0.956。本工作的结果证实了超声波法与碱性液体法混合脱硫的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on ultrasound assisted desulfurization of light gas oil using inorganic liquid
The feasibility of removing sulfur from real light gas oil using inorganic liquids (NaOH, Ca(OH) 2 and HCl) at various concentrations assisted with ultrasonication was investigated in a continuous flow setup. Experimental results showed that at the optimum operating time (40 min), 68% of sulfur was removed under mild conditions using 10 wt. % NaOH. Ultrasonication not only facilitated sulfur removal but also improved gas oil properties by decreasing density and viscosity by 1.40 and 4.42%, respectively, while the cetane number ( CN ) was increased by 7.0%. Solute selectivity ( S ) depending on sulfur mole fraction ( x S ) was correlated using StatPlus 6.7.1.0 software and the following values have been obtained: S = 53.869e –2.552 x S , and S = 29.573 – 41.878 x s for mixtures of 10% Ca(OH) 2 + S-compound + oil, and 10% NaOH + S-compound + oil, respectively. The correlation coefficients ( R 2 ) for the above equations were 0.9813 and 0.9611, respectively. An empirical correlation related to sulfur removal as a function of processing time and solvent concentration was found with R 2 = 0.956. The results of the present work confirmed the feasibility of employing the hybrid method of ultrasonication with using alkaline liquids for sulfur removal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environment Protection Engineering
Environment Protection Engineering 环境科学-工程:环境
CiteScore
0.80
自引率
0.00%
发文量
9
审稿时长
12 months
期刊介绍: Water purification, wastewater treatment, water reuse, solid waste disposal, gas emission abatement, systems of water and air pollution control, soil remediation.
期刊最新文献
Design of UVA-LED concentric glass tube microreactor and evaluation of photocatalysis with simultaneous adsorption and hydrodynamic cavitation for fluorescent dye degradation Open burning and open detonation of explosives. Prediction of pollutant emissions Quantile estimation of probability distributions for maximum daily precipitation and short time series of observational data for engineering design Simulation of the migration path of the maximum pollutants’ concentration. Case study of the tailing pond, southwest China Performance evaluation of nanofiltration membranes for dye removal of synthetic hand-drawn batik industry wastewater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1