mTreeIllustrator:用于多维层次数据可视化探索性分析的混合主动框架

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computing and Informatics Pub Date : 2023-01-01 DOI:10.31577/cai_2023_3_690
Guijuan Wang, Yu Zhao, Boyou Tan, Zhong Wang, Jiansong Wang, Hao Guo, Yadong Wu
{"title":"mTreeIllustrator:用于多维层次数据可视化探索性分析的混合主动框架","authors":"Guijuan Wang, Yu Zhao, Boyou Tan, Zhong Wang, Jiansong Wang, Hao Guo, Yadong Wu","doi":"10.31577/cai_2023_3_690","DOIUrl":null,"url":null,"abstract":". Multidimensional hierarchical (mTree) data are very common in daily life and scientific research. However, mTree data exploration is a laborious and time-consuming process due to its structural complexity and large dimension combination space. To address this problem, we present mTreeIllustrator, a mixed-initiative framework for exploratory analysis of multidimensional hierarchical data with faceted visualizations. First, we propose a recommendation pipeline for the automatic selection and visual representation of important subspaces of mTree data. Furthermore, we design a visual framework and an interaction schema to couple automatic recommendations with human specifications to facilitate progressive exploratory analysis. Comparative experiments and user studies demonstrate the usability and effectiveness of our framework.","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"42 1","pages":"690-715"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"mTreeIllustrator: A Mixed-Initiative Framework for Visual Exploratory Analysis of Multidimensional Hierarchical Data\",\"authors\":\"Guijuan Wang, Yu Zhao, Boyou Tan, Zhong Wang, Jiansong Wang, Hao Guo, Yadong Wu\",\"doi\":\"10.31577/cai_2023_3_690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Multidimensional hierarchical (mTree) data are very common in daily life and scientific research. However, mTree data exploration is a laborious and time-consuming process due to its structural complexity and large dimension combination space. To address this problem, we present mTreeIllustrator, a mixed-initiative framework for exploratory analysis of multidimensional hierarchical data with faceted visualizations. First, we propose a recommendation pipeline for the automatic selection and visual representation of important subspaces of mTree data. Furthermore, we design a visual framework and an interaction schema to couple automatic recommendations with human specifications to facilitate progressive exploratory analysis. Comparative experiments and user studies demonstrate the usability and effectiveness of our framework.\",\"PeriodicalId\":55215,\"journal\":{\"name\":\"Computing and Informatics\",\"volume\":\"42 1\",\"pages\":\"690-715\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing and Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.31577/cai_2023_3_690\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing and Informatics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.31577/cai_2023_3_690","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

. 多维层次(mTree)数据在日常生活和科学研究中非常常见。然而,由于mTree的结构复杂和大维度的组合空间,它的数据挖掘是一个费时费力的过程。为了解决这个问题,我们提出了mTreeIllustrator,这是一个混合倡议框架,用于探索性分析具有面形可视化的多维层次数据。首先,我们提出了一个推荐管道,用于自动选择和可视化表示mTree数据的重要子空间。此外,我们设计了一个可视化框架和交互模式,将自动推荐与人类规范结合起来,以促进渐进式探索性分析。对比实验和用户研究证明了我们的框架的可用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mTreeIllustrator: A Mixed-Initiative Framework for Visual Exploratory Analysis of Multidimensional Hierarchical Data
. Multidimensional hierarchical (mTree) data are very common in daily life and scientific research. However, mTree data exploration is a laborious and time-consuming process due to its structural complexity and large dimension combination space. To address this problem, we present mTreeIllustrator, a mixed-initiative framework for exploratory analysis of multidimensional hierarchical data with faceted visualizations. First, we propose a recommendation pipeline for the automatic selection and visual representation of important subspaces of mTree data. Furthermore, we design a visual framework and an interaction schema to couple automatic recommendations with human specifications to facilitate progressive exploratory analysis. Comparative experiments and user studies demonstrate the usability and effectiveness of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing and Informatics
Computing and Informatics 工程技术-计算机:人工智能
CiteScore
1.60
自引率
14.30%
发文量
19
审稿时长
9 months
期刊介绍: Main Journal Topics: COMPUTER ARCHITECTURES AND NETWORKING PARALLEL AND DISTRIBUTED COMPUTING THEORETICAL FOUNDATIONS SOFTWARE ENGINEERING KNOWLEDGE AND INFORMATION ENGINEERING Apart from the main topics given above, the Editorial Board welcomes papers from other areas of computing and informatics.
期刊最新文献
Attribute-Based Access Control Policy Generation Approach from Access Logs Based on the CatBoost Classification of Sentiment Using Optimized Hybrid Deep Learning Model BERTDom: Protein Domain Boundary Prediction Using BERT Adaptive Evolutionary Multitasking to Solve Inter-Domain Path Computation Under Node-Defined Domain Uniqueness Constraint: New Solution Encoding Scheme mTreeIllustrator: A Mixed-Initiative Framework for Visual Exploratory Analysis of Multidimensional Hierarchical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1