基于脉冲耦合神经网络的图像认证隐写方法

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computing and Informatics Pub Date : 2023-01-01 DOI:10.31577/cai_2023_3_591
R. Forgác, M. Očkay, Martin Javurek, Bianca Badidová
{"title":"基于脉冲耦合神经网络的图像认证隐写方法","authors":"R. Forgác, M. Očkay, Martin Javurek, Bianca Badidová","doi":"10.31577/cai_2023_3_591","DOIUrl":null,"url":null,"abstract":". This paper introduces a model for the authentication of large-scale images. The crucial element of the proposed model is the optimized Pulse Coupled Neural Network. This neural network generates position matrices based on which the embedding of authentication data into cover images is applied. Emphasis is placed on the minimalization of the stego image entropy change. Stego image entropy is consequently compared with the reference entropy of the cover image. The security of the suggested solution is granted by the neural network weights initialized with a steganographic key and by the encryption of accompanying steganographic data using the AES-256 algorithm. The integrity of the images is verified through the SHA-256 hash function. The integration of the accompanying and authentication data directly into the stego image and the authentication of the large images are the main contributions of the work.","PeriodicalId":55215,"journal":{"name":"Computing and Informatics","volume":"42 1","pages":"591-614"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steganography Approach to Image Authentication Using Pulse Coupled Neural Network\",\"authors\":\"R. Forgác, M. Očkay, Martin Javurek, Bianca Badidová\",\"doi\":\"10.31577/cai_2023_3_591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper introduces a model for the authentication of large-scale images. The crucial element of the proposed model is the optimized Pulse Coupled Neural Network. This neural network generates position matrices based on which the embedding of authentication data into cover images is applied. Emphasis is placed on the minimalization of the stego image entropy change. Stego image entropy is consequently compared with the reference entropy of the cover image. The security of the suggested solution is granted by the neural network weights initialized with a steganographic key and by the encryption of accompanying steganographic data using the AES-256 algorithm. The integrity of the images is verified through the SHA-256 hash function. The integration of the accompanying and authentication data directly into the stego image and the authentication of the large images are the main contributions of the work.\",\"PeriodicalId\":55215,\"journal\":{\"name\":\"Computing and Informatics\",\"volume\":\"42 1\",\"pages\":\"591-614\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing and Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.31577/cai_2023_3_591\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing and Informatics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.31577/cai_2023_3_591","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

. 本文介绍了一种大规模图像认证模型。该模型的关键要素是优化后的脉冲耦合神经网络。该神经网络生成位置矩阵,在此基础上将认证数据嵌入到封面图像中。重点放在最小化的隐写图像熵的变化。将隐去图像熵与封面图像的参考熵进行比较。该方案的安全性由隐写密钥初始化的神经网络权重和使用AES-256算法对隐写数据进行加密来保证。通过SHA-256哈希函数验证图像的完整性。将伴随数据和认证数据直接集成到隐写图像中以及对大图像进行认证是本工作的主要贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steganography Approach to Image Authentication Using Pulse Coupled Neural Network
. This paper introduces a model for the authentication of large-scale images. The crucial element of the proposed model is the optimized Pulse Coupled Neural Network. This neural network generates position matrices based on which the embedding of authentication data into cover images is applied. Emphasis is placed on the minimalization of the stego image entropy change. Stego image entropy is consequently compared with the reference entropy of the cover image. The security of the suggested solution is granted by the neural network weights initialized with a steganographic key and by the encryption of accompanying steganographic data using the AES-256 algorithm. The integrity of the images is verified through the SHA-256 hash function. The integration of the accompanying and authentication data directly into the stego image and the authentication of the large images are the main contributions of the work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing and Informatics
Computing and Informatics 工程技术-计算机:人工智能
CiteScore
1.60
自引率
14.30%
发文量
19
审稿时长
9 months
期刊介绍: Main Journal Topics: COMPUTER ARCHITECTURES AND NETWORKING PARALLEL AND DISTRIBUTED COMPUTING THEORETICAL FOUNDATIONS SOFTWARE ENGINEERING KNOWLEDGE AND INFORMATION ENGINEERING Apart from the main topics given above, the Editorial Board welcomes papers from other areas of computing and informatics.
期刊最新文献
Attribute-Based Access Control Policy Generation Approach from Access Logs Based on the CatBoost Classification of Sentiment Using Optimized Hybrid Deep Learning Model BERTDom: Protein Domain Boundary Prediction Using BERT Adaptive Evolutionary Multitasking to Solve Inter-Domain Path Computation Under Node-Defined Domain Uniqueness Constraint: New Solution Encoding Scheme mTreeIllustrator: A Mixed-Initiative Framework for Visual Exploratory Analysis of Multidimensional Hierarchical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1