{"title":"干式低氮氧化物微混合燃烧器可变氢-甲烷混合物的灵活燃料运行","authors":"H. Funke, N. Beckmann","doi":"10.38036/jgpp.13.2_1","DOIUrl":null,"url":null,"abstract":"The role of hydrogen (H 2 ) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH 4 ) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H 2 /CH 4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H 2 /CH 4 fuel mixture composition is varied between 57 and 100 vol.% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NO x performance and high combustion efficiency over a wide fuel range.","PeriodicalId":38948,"journal":{"name":"International Journal of Gas Turbine, Propulsion and Power Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexible Fuel Operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixtures\",\"authors\":\"H. Funke, N. Beckmann\",\"doi\":\"10.38036/jgpp.13.2_1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The role of hydrogen (H 2 ) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH 4 ) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H 2 /CH 4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H 2 /CH 4 fuel mixture composition is varied between 57 and 100 vol.% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NO x performance and high combustion efficiency over a wide fuel range.\",\"PeriodicalId\":38948,\"journal\":{\"name\":\"International Journal of Gas Turbine, Propulsion and Power Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Gas Turbine, Propulsion and Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38036/jgpp.13.2_1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Gas Turbine, Propulsion and Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38036/jgpp.13.2_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Flexible Fuel Operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixtures
The role of hydrogen (H 2 ) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH 4 ) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H 2 /CH 4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H 2 /CH 4 fuel mixture composition is varied between 57 and 100 vol.% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NO x performance and high combustion efficiency over a wide fuel range.