S. Sendlbeck, Alexander Fimpel, B. Siewerin, M. Otto, K. Stahl
{"title":"基于传动误差的自动特征选择慢速齿轮磨损状态监测","authors":"S. Sendlbeck, Alexander Fimpel, B. Siewerin, M. Otto, K. Stahl","doi":"10.36001/ijphm.2021.v12i2.3026","DOIUrl":null,"url":null,"abstract":"Gear flank changes caused by wear do not only affect the dynamic behavior of gear systems, but they can also compromise the load-carrying capacity of gear teeth up to critical failure. To help avoid unintended consequences like downtime or safety risks, a condition monitoring system needs to be able to estimate the current wear during operation based on available sensor measurements. While many condition monitoring approaches in research rely on vibrational analysis with manual feature engineering, gearboxes running at slow speed do not reveal much excitation information for this purpose. We therefore introduce an approach for slow-speed gear wear monitoring that is based on the dynamic gear transmission error and that contains an automated feature selection process. For this purpose, we extract a large set of features from the preprocessed transmission error samples. Applying combined filter and embedded feature selection methods enables us to automatically identify and remove features with low relevance. The selection process consists of filtering features with no statistical dependence on the target wear value, removing redundant features with a correlation analysis and a recursive feature elimination process with cross-validation based on a random forest regressor. The remaining relevant set of features is the basis for model training and subsequent wear estimation. For this, the present research employed two independent ensemble models, random forest regression and gradient boosted regression trees. To train and test the proposed approach, we conducted slow-speed gear experiments with developing gear wear on a single-stage spur gear test rig setup. The results of both models show good gear wear estimation performance compared to the actual wear mass loss, even for small quantities. Hence, the proposed transmission error-based approach with automated feature selection is able to quantify the degree of slow-speed wear and offers a possible way for condition monitoring and fault diagnosis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Condition Monitoring of Slow-speed Gear Wear using a Transmission Error-based Approach with Automated Feature Selection\",\"authors\":\"S. Sendlbeck, Alexander Fimpel, B. Siewerin, M. Otto, K. Stahl\",\"doi\":\"10.36001/ijphm.2021.v12i2.3026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gear flank changes caused by wear do not only affect the dynamic behavior of gear systems, but they can also compromise the load-carrying capacity of gear teeth up to critical failure. To help avoid unintended consequences like downtime or safety risks, a condition monitoring system needs to be able to estimate the current wear during operation based on available sensor measurements. While many condition monitoring approaches in research rely on vibrational analysis with manual feature engineering, gearboxes running at slow speed do not reveal much excitation information for this purpose. We therefore introduce an approach for slow-speed gear wear monitoring that is based on the dynamic gear transmission error and that contains an automated feature selection process. For this purpose, we extract a large set of features from the preprocessed transmission error samples. Applying combined filter and embedded feature selection methods enables us to automatically identify and remove features with low relevance. The selection process consists of filtering features with no statistical dependence on the target wear value, removing redundant features with a correlation analysis and a recursive feature elimination process with cross-validation based on a random forest regressor. The remaining relevant set of features is the basis for model training and subsequent wear estimation. For this, the present research employed two independent ensemble models, random forest regression and gradient boosted regression trees. To train and test the proposed approach, we conducted slow-speed gear experiments with developing gear wear on a single-stage spur gear test rig setup. The results of both models show good gear wear estimation performance compared to the actual wear mass loss, even for small quantities. Hence, the proposed transmission error-based approach with automated feature selection is able to quantify the degree of slow-speed wear and offers a possible way for condition monitoring and fault diagnosis.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/ijphm.2021.v12i2.3026\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2021.v12i2.3026","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Condition Monitoring of Slow-speed Gear Wear using a Transmission Error-based Approach with Automated Feature Selection
Gear flank changes caused by wear do not only affect the dynamic behavior of gear systems, but they can also compromise the load-carrying capacity of gear teeth up to critical failure. To help avoid unintended consequences like downtime or safety risks, a condition monitoring system needs to be able to estimate the current wear during operation based on available sensor measurements. While many condition monitoring approaches in research rely on vibrational analysis with manual feature engineering, gearboxes running at slow speed do not reveal much excitation information for this purpose. We therefore introduce an approach for slow-speed gear wear monitoring that is based on the dynamic gear transmission error and that contains an automated feature selection process. For this purpose, we extract a large set of features from the preprocessed transmission error samples. Applying combined filter and embedded feature selection methods enables us to automatically identify and remove features with low relevance. The selection process consists of filtering features with no statistical dependence on the target wear value, removing redundant features with a correlation analysis and a recursive feature elimination process with cross-validation based on a random forest regressor. The remaining relevant set of features is the basis for model training and subsequent wear estimation. For this, the present research employed two independent ensemble models, random forest regression and gradient boosted regression trees. To train and test the proposed approach, we conducted slow-speed gear experiments with developing gear wear on a single-stage spur gear test rig setup. The results of both models show good gear wear estimation performance compared to the actual wear mass loss, even for small quantities. Hence, the proposed transmission error-based approach with automated feature selection is able to quantify the degree of slow-speed wear and offers a possible way for condition monitoring and fault diagnosis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.