非合金碳钢平滑抛光检验的方差分析和L9田口设计

IF 3.3 Q2 ENGINEERING, MANUFACTURING Journal of Manufacturing and Materials Processing Pub Date : 2023-07-29 DOI:10.3390/jmmp7040136
C. Felhő, Frezgi Tesfom, G. Varga
{"title":"非合金碳钢平滑抛光检验的方差分析和L9田口设计","authors":"C. Felhő, Frezgi Tesfom, G. Varga","doi":"10.3390/jmmp7040136","DOIUrl":null,"url":null,"abstract":"Diamond burnishing is a finishing precision machining that is often used to improve the quality characteristics of previously machined surfaces. With its help, the surface roughness can be reduced, the surface hardness can be increased, and the tensile stresses remaining in the surface after cutting can be transformed into compressive ones, and these changes can increase the service life of the components. Diamond burnishing was typically developed for processing cylindrical surfaces and is most often used for this type of surface. In this manuscript, we present a new method with the help of sliding burnishing, which can also be used on flat surfaces. By using the clamping head of a special tool into the main spindle of the vertical milling machine and moving it along a suitable path, the flat surface can be burnished. Machining experiments were carried out with the new type of tool on general-purpose, unalloyed, structural carbon steel samples on which the flat surfaces were previously generated by face milling. The examined parameters were the burnishing force F, the feed fb, and the number of passes (NoP). The L9 Taguchi experiment design was applied for executing flat slide burnishing, and the examination was conducted by ANOVA analysis. This research contributes to the field by providing insights into optimizing the burnishing process parameters for achieving desired surface quality in milling operations.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"1 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANOVA Analysis and L9 Taguchi Design for Examination of Flat Slide Burnishing of Unalloyed Structural Carbon Steel\",\"authors\":\"C. Felhő, Frezgi Tesfom, G. Varga\",\"doi\":\"10.3390/jmmp7040136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diamond burnishing is a finishing precision machining that is often used to improve the quality characteristics of previously machined surfaces. With its help, the surface roughness can be reduced, the surface hardness can be increased, and the tensile stresses remaining in the surface after cutting can be transformed into compressive ones, and these changes can increase the service life of the components. Diamond burnishing was typically developed for processing cylindrical surfaces and is most often used for this type of surface. In this manuscript, we present a new method with the help of sliding burnishing, which can also be used on flat surfaces. By using the clamping head of a special tool into the main spindle of the vertical milling machine and moving it along a suitable path, the flat surface can be burnished. Machining experiments were carried out with the new type of tool on general-purpose, unalloyed, structural carbon steel samples on which the flat surfaces were previously generated by face milling. The examined parameters were the burnishing force F, the feed fb, and the number of passes (NoP). The L9 Taguchi experiment design was applied for executing flat slide burnishing, and the examination was conducted by ANOVA analysis. This research contributes to the field by providing insights into optimizing the burnishing process parameters for achieving desired surface quality in milling operations.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp7040136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7040136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

金刚石抛光是一种精加工,通常用于改善先前加工表面的质量特性。在它的帮助下,可以降低表面粗糙度,提高表面硬度,并且可以将切割后残留在表面的拉应力转化为压应力,这些变化可以增加部件的使用寿命。金刚石抛光通常是为加工圆柱形表面而开发的,并且最常用于这种类型的表面。在本文中,我们提出了一种滑动抛光的新方法,这种方法也可以用于平面。通过将专用刀具的夹头插入立式铣床主轴并沿合适的路径移动,可以对平面进行抛光。利用新型刀具对普通非合金化结构钢试样进行了加工试验,并对其进行了平面铣削加工。检测参数为抛光力F、进给量fb和孔道数(NoP)。平片抛光采用L9田口实验设计,检验采用方差分析。该研究通过提供优化抛光工艺参数以实现铣削操作所需表面质量的见解,为该领域做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANOVA Analysis and L9 Taguchi Design for Examination of Flat Slide Burnishing of Unalloyed Structural Carbon Steel
Diamond burnishing is a finishing precision machining that is often used to improve the quality characteristics of previously machined surfaces. With its help, the surface roughness can be reduced, the surface hardness can be increased, and the tensile stresses remaining in the surface after cutting can be transformed into compressive ones, and these changes can increase the service life of the components. Diamond burnishing was typically developed for processing cylindrical surfaces and is most often used for this type of surface. In this manuscript, we present a new method with the help of sliding burnishing, which can also be used on flat surfaces. By using the clamping head of a special tool into the main spindle of the vertical milling machine and moving it along a suitable path, the flat surface can be burnished. Machining experiments were carried out with the new type of tool on general-purpose, unalloyed, structural carbon steel samples on which the flat surfaces were previously generated by face milling. The examined parameters were the burnishing force F, the feed fb, and the number of passes (NoP). The L9 Taguchi experiment design was applied for executing flat slide burnishing, and the examination was conducted by ANOVA analysis. This research contributes to the field by providing insights into optimizing the burnishing process parameters for achieving desired surface quality in milling operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
期刊最新文献
Assessing the Feasibility of Fabricating Thermoplastic Laminates from Unidirectional Tapes in Open Mold Environments Vickers Hardness Mechanical Models and Thermoplastic Polymer Injection-Molded Products’ Static Friction Coefficients Phase Composition, Microstructure and Mechanical Properties of Zr57Cu15Ni10Nb5 Alloy Obtained by Selective Laser Melting In-Process Machining Distortion Prediction Method Based on Bulk Residual Stresses Estimation from Reduced Layer Removal A Combined Microscopy Study of the Microstructural Evolution of Ferritic Stainless Steel upon Deep Drawing: The Role of Alloy Composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1