{"title":"线性关系的分量分解和笛卡尔分解","authors":"S. Hassi, H. D. Snoo, F. H. Szafraniec","doi":"10.4064/DM465-0-1","DOIUrl":null,"url":null,"abstract":"Let $A$ be a, not necessarily closed, linear relation in a Hilbert space $\\sH$ with a multivalued part $\\mul A$. An operator $B$ in $\\sH$ with $\\ran B\\perp\\mul A^{**}$ is said to be an operator part of $A$ when $A=B \\hplus (\\{0\\}\\times \\mul A)$, where the sum is componentwise (i.e. span of the graphs). This decomposition provides a counterpart and an extension for the notion of closability of (unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for the existence of an operator part are established via the so-called canonical decomposition of $A$. In addition, conditions are developed for the decomposition to be orthogonal (components defined in orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be valid for several classes of relations. The relation $A$ is said to have a Cartesian decomposition if $A=U+\\I V$, where $U$ and $V$ are symmetric relations and the sum is operatorwise. The connection between a Cartesian decomposition of $A$ and the real and imaginary parts of $A$ is investigated.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Componentwise and Cartesian decompositions of linear relations\",\"authors\":\"S. Hassi, H. D. Snoo, F. H. Szafraniec\",\"doi\":\"10.4064/DM465-0-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $A$ be a, not necessarily closed, linear relation in a Hilbert space $\\\\sH$ with a multivalued part $\\\\mul A$. An operator $B$ in $\\\\sH$ with $\\\\ran B\\\\perp\\\\mul A^{**}$ is said to be an operator part of $A$ when $A=B \\\\hplus (\\\\{0\\\\}\\\\times \\\\mul A)$, where the sum is componentwise (i.e. span of the graphs). This decomposition provides a counterpart and an extension for the notion of closability of (unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for the existence of an operator part are established via the so-called canonical decomposition of $A$. In addition, conditions are developed for the decomposition to be orthogonal (components defined in orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be valid for several classes of relations. The relation $A$ is said to have a Cartesian decomposition if $A=U+\\\\I V$, where $U$ and $V$ are symmetric relations and the sum is operatorwise. The connection between a Cartesian decomposition of $A$ and the real and imaginary parts of $A$ is investigated.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/DM465-0-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/DM465-0-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Componentwise and Cartesian decompositions of linear relations
Let $A$ be a, not necessarily closed, linear relation in a Hilbert space $\sH$ with a multivalued part $\mul A$. An operator $B$ in $\sH$ with $\ran B\perp\mul A^{**}$ is said to be an operator part of $A$ when $A=B \hplus (\{0\}\times \mul A)$, where the sum is componentwise (i.e. span of the graphs). This decomposition provides a counterpart and an extension for the notion of closability of (unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for the existence of an operator part are established via the so-called canonical decomposition of $A$. In addition, conditions are developed for the decomposition to be orthogonal (components defined in orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be valid for several classes of relations. The relation $A$ is said to have a Cartesian decomposition if $A=U+\I V$, where $U$ and $V$ are symmetric relations and the sum is operatorwise. The connection between a Cartesian decomposition of $A$ and the real and imaginary parts of $A$ is investigated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.