А В Пашенко, С О Хмизов, О А Тяжелов, М Ю Карпінський, О Д Карпінська, О Д Яресько
{"title":"手术后肺泡下神经麻痹疗法","authors":"А В Пашенко, С О Хмизов, О А Тяжелов, М Ю Карпінський, О Д Карпінська, О Д Яресько","doi":"10.36377/1683-2981-2019-17-3-62-69","DOIUrl":null,"url":null,"abstract":"У статті проведено аналіз результатів визначення напружено-деформованого стану біомеханічної системи «інтрамедулярний фіксатор уламки» на різних етапах відновлення функції сегмента кінцівки після хірургічних втручань. Дослідження проводилося шляхом математичного моделювання методом кінцевих елементів напружено-деформованого стану великогомілкової кістки в умовах недосконалого остеогенезу з використанням інтрамедулярних фіксаторів різних типів титанових еластичних стрижнів, інтрамедулярного телескопічного фіксатора без ротаційної стабільності, а також ротаційно-стабільного інтрамедулярного телескопічного фіксатора після моделювання коригуючої остеотомії.В статье проведен анализ результатов определения напряженно-деформированного состояния биомеханической системы «интрамедуллярный фиксатор отломки» на разных этапах восстановления функции сегмента конечности после хирургических вмешательств. Исследование проводилось путем математического моделирования методом конечных элементов напряженно-деформированного состояния большеберцовой кости в условиях несовершенного остеогенеза с использованием интрамедуллярных фиксаторов различных типов титановых эластичных стержней, интрамедуллярного телескопического фиксатора без ротационной стабильности, а также ротационно-стабильного интрамедуллярного телескопического фиксатора после моделирования корригирующей остеотомии.Background. Surgical correction of multiplanar deformities of long bones of the limbs in growing children with osteogenesis imperfecta is one of the most important stages in the treatment of these patients. At the present stage of development of orthopedic surgery, intramedullary telescopic nails of different types are being used in growing children with osteogenesis imperfecta. Objective: to determine the stress-strain state of the system «intramedullary fixator fragments» in various stages of the recovery of limb segment function after surgery. Materials and methods. In modeling the union, mechanical properties of this element were replaced by the properties of cortical bone. In the simulation of «bone implant» system, this item increased by 5 cm during the growth. Material was considered homogeneous and isotropic. As the final element, 10-node tetrahedron with quadratic approximation has been chosen. Mechanical properties of healthy bone were chosen according to V.P. Agapov, V.A. Berezovsky, mechanical properties of the bone tissue in oseogenesis imperfecta according to Z.F. Fan and J.M. Fritz, and the characteristics of synthetic materials according to J.M. Gere, S.P. Timoshenko. We used characteristics, such as E elastic modulus (Young’s modulus), ν Poisson’s ratio. The value of the load on the compression and flexion was 350 N, corresponding to the load of the body of a child weighing 50 kg (500 N) at one-leg standing (without the weight of standing leg). When studying models for torsion, torque moment of 10 Nm is applied to the proximal articular surface. The magnitude of the stress has been controlled in 11 areas: 1-10 checkpoints, 11 zone of maximum stress on the metal structure. Results. The first phase of the study: elastic titanium rods come under very considerable strain for all types of stress that can lead to their destruction or deformation, but it does not lead to the discharge of bone tissue, which is a negative factor in terms of impaired bone quality. Intramedullary telescopic nails with rotational stability works well under the influence of torsion loads that can significantly unload bone tissue, especially around areas of growth. The second phase of the study: forming a complete bone regenerate leading to inclusion in the process of loading, which leads to even distribution of stresses in the bone for all types of stress, and unloading the fixation devices. With rotary load, rotary stable intramedullary telescopic nail continues to serve as internal «splinting» of the bone. The third phase of the study: the increased length of the bone after completion of its growth does not lead to significant changes in the distribution of stresses in the models. Conclusions. Intramedullary telescopic nails with rotational stability under load torsion work more effectively for all other types of implants. Their use can reduce and evenly distribute stress over the entire length of the bone.","PeriodicalId":34648,"journal":{"name":"Endodontiia Today","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Методы лечения парестезии нижнего альвеолярного нерва после хирургических вмешательств\",\"authors\":\"А В Пашенко, С О Хмизов, О А Тяжелов, М Ю Карпінський, О Д Карпінська, О Д Яресько\",\"doi\":\"10.36377/1683-2981-2019-17-3-62-69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"У статті проведено аналіз результатів визначення напружено-деформованого стану біомеханічної системи «інтрамедулярний фіксатор уламки» на різних етапах відновлення функції сегмента кінцівки після хірургічних втручань. Дослідження проводилося шляхом математичного моделювання методом кінцевих елементів напружено-деформованого стану великогомілкової кістки в умовах недосконалого остеогенезу з використанням інтрамедулярних фіксаторів різних типів титанових еластичних стрижнів, інтрамедулярного телескопічного фіксатора без ротаційної стабільності, а також ротаційно-стабільного інтрамедулярного телескопічного фіксатора після моделювання коригуючої остеотомії.В статье проведен анализ результатов определения напряженно-деформированного состояния биомеханической системы «интрамедуллярный фиксатор отломки» на разных этапах восстановления функции сегмента конечности после хирургических вмешательств. Исследование проводилось путем математического моделирования методом конечных элементов напряженно-деформированного состояния большеберцовой кости в условиях несовершенного остеогенеза с использованием интрамедуллярных фиксаторов различных типов титановых эластичных стержней, интрамедуллярного телескопического фиксатора без ротационной стабильности, а также ротационно-стабильного интрамедуллярного телескопического фиксатора после моделирования корригирующей остеотомии.Background. Surgical correction of multiplanar deformities of long bones of the limbs in growing children with osteogenesis imperfecta is one of the most important stages in the treatment of these patients. At the present stage of development of orthopedic surgery, intramedullary telescopic nails of different types are being used in growing children with osteogenesis imperfecta. Objective: to determine the stress-strain state of the system «intramedullary fixator fragments» in various stages of the recovery of limb segment function after surgery. Materials and methods. In modeling the union, mechanical properties of this element were replaced by the properties of cortical bone. In the simulation of «bone implant» system, this item increased by 5 cm during the growth. Material was considered homogeneous and isotropic. As the final element, 10-node tetrahedron with quadratic approximation has been chosen. Mechanical properties of healthy bone were chosen according to V.P. Agapov, V.A. Berezovsky, mechanical properties of the bone tissue in oseogenesis imperfecta according to Z.F. Fan and J.M. Fritz, and the characteristics of synthetic materials according to J.M. Gere, S.P. Timoshenko. We used characteristics, such as E elastic modulus (Young’s modulus), ν Poisson’s ratio. The value of the load on the compression and flexion was 350 N, corresponding to the load of the body of a child weighing 50 kg (500 N) at one-leg standing (without the weight of standing leg). When studying models for torsion, torque moment of 10 Nm is applied to the proximal articular surface. The magnitude of the stress has been controlled in 11 areas: 1-10 checkpoints, 11 zone of maximum stress on the metal structure. Results. The first phase of the study: elastic titanium rods come under very considerable strain for all types of stress that can lead to their destruction or deformation, but it does not lead to the discharge of bone tissue, which is a negative factor in terms of impaired bone quality. Intramedullary telescopic nails with rotational stability works well under the influence of torsion loads that can significantly unload bone tissue, especially around areas of growth. The second phase of the study: forming a complete bone regenerate leading to inclusion in the process of loading, which leads to even distribution of stresses in the bone for all types of stress, and unloading the fixation devices. With rotary load, rotary stable intramedullary telescopic nail continues to serve as internal «splinting» of the bone. The third phase of the study: the increased length of the bone after completion of its growth does not lead to significant changes in the distribution of stresses in the models. Conclusions. Intramedullary telescopic nails with rotational stability under load torsion work more effectively for all other types of implants. Their use can reduce and evenly distribute stress over the entire length of the bone.\",\"PeriodicalId\":34648,\"journal\":{\"name\":\"Endodontiia Today\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endodontiia Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36377/1683-2981-2019-17-3-62-69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endodontiia Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36377/1683-2981-2019-17-3-62-69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文分析了机械系统“Intermedularnyfikstor”在多个国家的分支机构中设计的变形机械系统的结果。到目前为止,这项研究是用结构化元素的方法进行的,这些元素包括一个由不同类型钛弹性剪线的直流整流器、一个没有旋转稳定的直流望远镜整流器、一个没有旋转稳定的直流望远镜整流器、一个没有旋转稳定的直流望远镜整流器、一个没有旋转稳定的直流望远镜整流器、一个有缺陷的直流望远镜整流器、一个有缺陷的直流望远镜整流器、一个没有旋转稳定的直流望远镜整流器、一个有缺陷的直流望远镜整流器,本文分析了外科手术后肢体段功能恢复不同阶段应力变形生物力学系统“脑内断开定位器”的结果。该研究是通过使用不同类型钛弹性棒的髓内夹持器、无旋转稳定性的髓内伸缩夹持器对不完全骨生成条件下胫骨应力变形状态的有限元数学建模方法进行的。背景。At the present stage of development of orthopedic surgery, intramedullary telescopic nails of different types are being used in growing children with osteogenesis imperfecta. Objective: to determine the stress-strain state of the system «intramedullary fixator fragments» in various stages of the recovery of limb segment function after surgery. Materials and methods. In modeling the union, mechanical properties of this element were replaced by the properties of cortical bone. In the simulation of «bone implant» system, this item increased by 5 cm during the growth. Material was considered homogeneous and isotropic. As the final element, 10-node tetrahedron with quadratic approximation has been chosen. Mechanical properties of healthy bone were chosen according to V.P. Agapov, V.A. Berezovsky, mechanical properties of the bone tissue in oseogenesis imperfecta according to Z.F. Fan and J.M. Fritz, and the characteristics of synthetic materials according to J.M. Gere, S.P. Timoshenko. We used characteristics, such as E elastic modulus (Young’s modulus), ν Poisson’s ratio. The value of the load on the compression and flexion was 350 N, corresponding to the load of the body of a child weighing 50 kg (500 N) at one-leg standing (without the weight of standing leg). When studying models for torsion, torque moment of 10 Nm is applied to the proximal articular surface. The magnitude of the stress has been controlled in 11 areas: 1-10 checkpoints, 11 zone of maximum stress on the metal structure. Results. The first phase of the study: elastic titanium rods come under very considerable strain for all types of stress that can lead to their destruction or deformation, but it does not lead to the discharge of bone tissue, which is a negative factor in terms of impaired bone quality. Intramedullary telescopic nails with rotational stability works well under the influence of torsion loads that can significantly unload bone tissue, especially around areas of growth. The second phase of the study: forming a complete bone regenerate leading to inclusion in the process of loading, which leads to even distribution of stresses in the bone for all types of stress, and unloading the fixation devices. With rotary load, rotary stable intramedullary telescopic nail continues to serve as internal «splinting» of the bone. The third phase of the study: the increased length of the bone after completion of its growth does not lead to significant changes in the distribution of stresses in the models. Conclusions. Intramedullary telescopic nails with rotational stability under load torsion work more effectively for all other types of implants. Their use can reduce and evenly distribute stress over the entire length of the bone.
Методы лечения парестезии нижнего альвеолярного нерва после хирургических вмешательств
У статті проведено аналіз результатів визначення напружено-деформованого стану біомеханічної системи «інтрамедулярний фіксатор уламки» на різних етапах відновлення функції сегмента кінцівки після хірургічних втручань. Дослідження проводилося шляхом математичного моделювання методом кінцевих елементів напружено-деформованого стану великогомілкової кістки в умовах недосконалого остеогенезу з використанням інтрамедулярних фіксаторів різних типів титанових еластичних стрижнів, інтрамедулярного телескопічного фіксатора без ротаційної стабільності, а також ротаційно-стабільного інтрамедулярного телескопічного фіксатора після моделювання коригуючої остеотомії.В статье проведен анализ результатов определения напряженно-деформированного состояния биомеханической системы «интрамедуллярный фиксатор отломки» на разных этапах восстановления функции сегмента конечности после хирургических вмешательств. Исследование проводилось путем математического моделирования методом конечных элементов напряженно-деформированного состояния большеберцовой кости в условиях несовершенного остеогенеза с использованием интрамедуллярных фиксаторов различных типов титановых эластичных стержней, интрамедуллярного телескопического фиксатора без ротационной стабильности, а также ротационно-стабильного интрамедуллярного телескопического фиксатора после моделирования корригирующей остеотомии.Background. Surgical correction of multiplanar deformities of long bones of the limbs in growing children with osteogenesis imperfecta is one of the most important stages in the treatment of these patients. At the present stage of development of orthopedic surgery, intramedullary telescopic nails of different types are being used in growing children with osteogenesis imperfecta. Objective: to determine the stress-strain state of the system «intramedullary fixator fragments» in various stages of the recovery of limb segment function after surgery. Materials and methods. In modeling the union, mechanical properties of this element were replaced by the properties of cortical bone. In the simulation of «bone implant» system, this item increased by 5 cm during the growth. Material was considered homogeneous and isotropic. As the final element, 10-node tetrahedron with quadratic approximation has been chosen. Mechanical properties of healthy bone were chosen according to V.P. Agapov, V.A. Berezovsky, mechanical properties of the bone tissue in oseogenesis imperfecta according to Z.F. Fan and J.M. Fritz, and the characteristics of synthetic materials according to J.M. Gere, S.P. Timoshenko. We used characteristics, such as E elastic modulus (Young’s modulus), ν Poisson’s ratio. The value of the load on the compression and flexion was 350 N, corresponding to the load of the body of a child weighing 50 kg (500 N) at one-leg standing (without the weight of standing leg). When studying models for torsion, torque moment of 10 Nm is applied to the proximal articular surface. The magnitude of the stress has been controlled in 11 areas: 1-10 checkpoints, 11 zone of maximum stress on the metal structure. Results. The first phase of the study: elastic titanium rods come under very considerable strain for all types of stress that can lead to their destruction or deformation, but it does not lead to the discharge of bone tissue, which is a negative factor in terms of impaired bone quality. Intramedullary telescopic nails with rotational stability works well under the influence of torsion loads that can significantly unload bone tissue, especially around areas of growth. The second phase of the study: forming a complete bone regenerate leading to inclusion in the process of loading, which leads to even distribution of stresses in the bone for all types of stress, and unloading the fixation devices. With rotary load, rotary stable intramedullary telescopic nail continues to serve as internal «splinting» of the bone. The third phase of the study: the increased length of the bone after completion of its growth does not lead to significant changes in the distribution of stresses in the models. Conclusions. Intramedullary telescopic nails with rotational stability under load torsion work more effectively for all other types of implants. Their use can reduce and evenly distribute stress over the entire length of the bone.