{"title":"分数阶Malmheden定理","authors":"S. Dipierro, G. Giacomin, E. Valdinoci","doi":"10.3934/mine.2023024","DOIUrl":null,"url":null,"abstract":"We provide a fractional counterpart of the classical results by Schwarz and Malmheden on harmonic functions. From that we obtain a representation formula for $ s $-harmonic functions as a linear superposition of weighted classical harmonic functions which also entails a new proof of the fractional Harnack inequality. This proof also leads to optimal constants for the fractional Harnack inequality in the ball.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The fractional Malmheden theorem\",\"authors\":\"S. Dipierro, G. Giacomin, E. Valdinoci\",\"doi\":\"10.3934/mine.2023024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a fractional counterpart of the classical results by Schwarz and Malmheden on harmonic functions. From that we obtain a representation formula for $ s $-harmonic functions as a linear superposition of weighted classical harmonic functions which also entails a new proof of the fractional Harnack inequality. This proof also leads to optimal constants for the fractional Harnack inequality in the ball.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023024\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023024","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
摘要
我们提供了Schwarz和Malmheden关于调和函数的经典结果的分数对应物。由此得到$ s $-调和函数作为加权经典调和函数的线性叠加的表示公式,并对分数阶的哈纳克不等式作了新的证明。这个证明也得到了分数阶哈纳克不等式在球中的最优常数。
We provide a fractional counterpart of the classical results by Schwarz and Malmheden on harmonic functions. From that we obtain a representation formula for $ s $-harmonic functions as a linear superposition of weighted classical harmonic functions which also entails a new proof of the fractional Harnack inequality. This proof also leads to optimal constants for the fractional Harnack inequality in the ball.