基于深度神经网络的美式期权加速定价

IF 3.2 Q1 BUSINESS, FINANCE Quantitative Finance and Economics Pub Date : 2023-01-01 DOI:10.3934/qfe.2023011
David Anderson, Urban Ulrych
{"title":"基于深度神经网络的美式期权加速定价","authors":"David Anderson, Urban Ulrych","doi":"10.3934/qfe.2023011","DOIUrl":null,"url":null,"abstract":"Given the competitiveness of a market-making environment, the ability to speedily quote option prices consistent with an ever-changing market environment is essential. Thus, the smallest acceleration or improvement over traditional pricing methods is crucial to avoid arbitrage. We propose a method for accelerating the pricing of American options to near-instantaneous using a feed-forward neural network. This neural network is trained over the chosen (e.g., Heston) stochastic volatility specification. Such an approach facilitates parameter interpretability, as generally required by the regulators, and establishes our method in the area of eXplainable Artificial Intelligence (XAI) for finance. We show that the proposed deep explainable pricer induces a speed-accuracy trade-off compared to the typical Monte Carlo or Partial Differential Equation-based pricing methods. Moreover, the proposed approach allows for pricing derivatives with path-dependent and more complex payoffs and is, given the sufficient accuracy of computation and its tractable nature, applicable in a market-making environment.","PeriodicalId":45226,"journal":{"name":"Quantitative Finance and Economics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Accelerated American option pricing with deep neural networks\",\"authors\":\"David Anderson, Urban Ulrych\",\"doi\":\"10.3934/qfe.2023011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the competitiveness of a market-making environment, the ability to speedily quote option prices consistent with an ever-changing market environment is essential. Thus, the smallest acceleration or improvement over traditional pricing methods is crucial to avoid arbitrage. We propose a method for accelerating the pricing of American options to near-instantaneous using a feed-forward neural network. This neural network is trained over the chosen (e.g., Heston) stochastic volatility specification. Such an approach facilitates parameter interpretability, as generally required by the regulators, and establishes our method in the area of eXplainable Artificial Intelligence (XAI) for finance. We show that the proposed deep explainable pricer induces a speed-accuracy trade-off compared to the typical Monte Carlo or Partial Differential Equation-based pricing methods. Moreover, the proposed approach allows for pricing derivatives with path-dependent and more complex payoffs and is, given the sufficient accuracy of computation and its tractable nature, applicable in a market-making environment.\",\"PeriodicalId\":45226,\"journal\":{\"name\":\"Quantitative Finance and Economics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Finance and Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/qfe.2023011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance and Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/qfe.2023011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 3

摘要

考虑到做市环境的竞争性,根据不断变化的市场环境快速报价期权的能力至关重要。因此,对传统定价方法的最小加速或改进对于避免套利至关重要。我们提出了一种利用前馈神经网络将美式期权的定价加速到接近瞬时的方法。该神经网络在选定的(例如,赫斯顿)随机波动规范上进行训练。这种方法促进了参数的可解释性,正如监管机构通常所要求的那样,并在金融可解释人工智能(XAI)领域建立了我们的方法。我们表明,与典型的蒙特卡罗或基于偏微分方程的定价方法相比,所提出的深度可解释定价器引起了速度和精度的权衡。此外,所提出的方法允许对具有路径依赖和更复杂收益的衍生品进行定价,并且鉴于计算的足够准确性及其易于处理的性质,适用于做市环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated American option pricing with deep neural networks
Given the competitiveness of a market-making environment, the ability to speedily quote option prices consistent with an ever-changing market environment is essential. Thus, the smallest acceleration or improvement over traditional pricing methods is crucial to avoid arbitrage. We propose a method for accelerating the pricing of American options to near-instantaneous using a feed-forward neural network. This neural network is trained over the chosen (e.g., Heston) stochastic volatility specification. Such an approach facilitates parameter interpretability, as generally required by the regulators, and establishes our method in the area of eXplainable Artificial Intelligence (XAI) for finance. We show that the proposed deep explainable pricer induces a speed-accuracy trade-off compared to the typical Monte Carlo or Partial Differential Equation-based pricing methods. Moreover, the proposed approach allows for pricing derivatives with path-dependent and more complex payoffs and is, given the sufficient accuracy of computation and its tractable nature, applicable in a market-making environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
1.90%
发文量
14
审稿时长
12 weeks
期刊最新文献
The effects of different modes of foreign bank entry in the Turkish banking sector during the 2007–2009 Global financial crisis Cost and performance of carbon risk in socially responsible mutual funds Investing in virtue and frowning at vice? Lessons from the global economic and financial crisis Wavelet-based systematic risk estimation for GCC stock markets and impact of the embargo on the Qatar case Autoregressive distributed lag estimation of bank financing and Nigerian manufacturing sector capacity utilization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1