{"title":"二次和三次频率的须状环面分离矩阵分裂的指数小渐近估计","authors":"A. Delshams, M. Gonchenko, P. Gutiérrez","doi":"10.3934/ERA.2014.21.41","DOIUrl":null,"url":null,"abstract":"We study the splitting of invariant manifolds of whiskered tori with two or three frequencies in nearly-integrable Hamiltonian systems, such that the hyperbolic part is given by a pendulum. We consider a 2-dimensional torus with a frequency vector ! = (1; ), where is a quadratic irrational number, or a 3-dimensional torus with a frequency vector ! = (1; ; 2 ), where is a cubic irrational number. Applying the Poincar e{Melnikov method, we nd exponentially small asymptotic estimates for the maximal splitting distance between the stable and unstable manifolds associated to the invariant torus, and we show that such estimates depend strongly on the arithmetic properties of the frequencies. In the quadratic case, we use the continued fractions theory to establish a certain arithmetic property, fullled in 24 cases, which allows us to provide asymptotic estimates in a simple way. In the cubic case, we focus our attention to the case in which is the so-called cubic golden number (the real root of x 3 +x 1 = 0), obtaining also asymptotic estimates. We point out the similitudes and dierences between the results obtained for both the quadratic and cubic cases.","PeriodicalId":53151,"journal":{"name":"Electronic Research Announcements in Mathematical Sciences","volume":"21 1","pages":"41-61"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies\",\"authors\":\"A. Delshams, M. Gonchenko, P. Gutiérrez\",\"doi\":\"10.3934/ERA.2014.21.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the splitting of invariant manifolds of whiskered tori with two or three frequencies in nearly-integrable Hamiltonian systems, such that the hyperbolic part is given by a pendulum. We consider a 2-dimensional torus with a frequency vector ! = (1; ), where is a quadratic irrational number, or a 3-dimensional torus with a frequency vector ! = (1; ; 2 ), where is a cubic irrational number. Applying the Poincar e{Melnikov method, we nd exponentially small asymptotic estimates for the maximal splitting distance between the stable and unstable manifolds associated to the invariant torus, and we show that such estimates depend strongly on the arithmetic properties of the frequencies. In the quadratic case, we use the continued fractions theory to establish a certain arithmetic property, fullled in 24 cases, which allows us to provide asymptotic estimates in a simple way. In the cubic case, we focus our attention to the case in which is the so-called cubic golden number (the real root of x 3 +x 1 = 0), obtaining also asymptotic estimates. We point out the similitudes and dierences between the results obtained for both the quadratic and cubic cases.\",\"PeriodicalId\":53151,\"journal\":{\"name\":\"Electronic Research Announcements in Mathematical Sciences\",\"volume\":\"21 1\",\"pages\":\"41-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Announcements in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/ERA.2014.21.41\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Announcements in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ERA.2014.21.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Exponentially small asymptotic estimates for the splitting of separatrices to whiskered tori with quadratic and cubic frequencies
We study the splitting of invariant manifolds of whiskered tori with two or three frequencies in nearly-integrable Hamiltonian systems, such that the hyperbolic part is given by a pendulum. We consider a 2-dimensional torus with a frequency vector ! = (1; ), where is a quadratic irrational number, or a 3-dimensional torus with a frequency vector ! = (1; ; 2 ), where is a cubic irrational number. Applying the Poincar e{Melnikov method, we nd exponentially small asymptotic estimates for the maximal splitting distance between the stable and unstable manifolds associated to the invariant torus, and we show that such estimates depend strongly on the arithmetic properties of the frequencies. In the quadratic case, we use the continued fractions theory to establish a certain arithmetic property, fullled in 24 cases, which allows us to provide asymptotic estimates in a simple way. In the cubic case, we focus our attention to the case in which is the so-called cubic golden number (the real root of x 3 +x 1 = 0), obtaining also asymptotic estimates. We point out the similitudes and dierences between the results obtained for both the quadratic and cubic cases.
期刊介绍:
Electronic Research Archive (ERA), formerly known as Electronic Research Announcements in Mathematical Sciences, rapidly publishes original and expository full-length articles of significant advances in all branches of mathematics. All articles should be designed to communicate their contents to a broad mathematical audience and must meet high standards for mathematical content and clarity. After review and acceptance, articles enter production for immediate publication.
ERA is the continuation of Electronic Research Announcements of the AMS published by the American Mathematical Society, 1995—2007