为什么鸣禽(欧洲椋鸟)不使用音高来识别音调序列?信息独立假说

Pub Date : 2017-01-01 DOI:10.3819/CCBR.2017.120003
Aniruddh D. Patel
{"title":"为什么鸣禽(欧洲椋鸟)不使用音高来识别音调序列?信息独立假说","authors":"Aniruddh D. Patel","doi":"10.3819/CCBR.2017.120003","DOIUrl":null,"url":null,"abstract":"It has recently been shown that the European starling (Sturnus vulgaris), a species of songbird, does not use pitch to recognize tone sequences. Instead, recognition relies on the pattern of spectral shapes created by successive tones. In this article I suggest that rather than being an unusual case, starlings may be representative of the way in which many animal species process tone sequences. Specifically, I suggest that recognition of tone sequences based on pitch patterns occurs only in certain species, namely, those that modulate the pitch and spectral shape of sounds independently in their own communication system to convey distinct types of information. This informational independence hypothesis makes testable predictions and suggests that a basic feature of human music perception relies on neural specializations, which are likely to be uncommon in cognitive evolution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Why Doesn’t a Songbird (the European Starling) Use Pitch to Recognize Tone Sequences? The Informational Independence Hypothesis\",\"authors\":\"Aniruddh D. Patel\",\"doi\":\"10.3819/CCBR.2017.120003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has recently been shown that the European starling (Sturnus vulgaris), a species of songbird, does not use pitch to recognize tone sequences. Instead, recognition relies on the pattern of spectral shapes created by successive tones. In this article I suggest that rather than being an unusual case, starlings may be representative of the way in which many animal species process tone sequences. Specifically, I suggest that recognition of tone sequences based on pitch patterns occurs only in certain species, namely, those that modulate the pitch and spectral shape of sounds independently in their own communication system to convey distinct types of information. This informational independence hypothesis makes testable predictions and suggests that a basic feature of human music perception relies on neural specializations, which are likely to be uncommon in cognitive evolution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3819/CCBR.2017.120003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3819/CCBR.2017.120003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近有研究表明,欧洲椋鸟(Sturnus vulgaris),一种鸣禽,不使用音高来识别音调序列。相反,识别依赖于连续音调产生的光谱形状模式。在这篇文章中,我认为欧椋鸟可能是许多动物物种处理音调序列方式的代表,而不是一个不寻常的案例。具体来说,我认为基于音高模式的音调序列识别只发生在某些物种中,即那些在自己的通信系统中独立调节声音的音高和频谱形状以传达不同类型信息的物种。这种信息独立性假设做出了可测试的预测,并表明人类音乐感知的一个基本特征依赖于神经专业化,这在认知进化中可能并不常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Why Doesn’t a Songbird (the European Starling) Use Pitch to Recognize Tone Sequences? The Informational Independence Hypothesis
It has recently been shown that the European starling (Sturnus vulgaris), a species of songbird, does not use pitch to recognize tone sequences. Instead, recognition relies on the pattern of spectral shapes created by successive tones. In this article I suggest that rather than being an unusual case, starlings may be representative of the way in which many animal species process tone sequences. Specifically, I suggest that recognition of tone sequences based on pitch patterns occurs only in certain species, namely, those that modulate the pitch and spectral shape of sounds independently in their own communication system to convey distinct types of information. This informational independence hypothesis makes testable predictions and suggests that a basic feature of human music perception relies on neural specializations, which are likely to be uncommon in cognitive evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1