Daxiang Cui, C. Ozkan, Sathyajith Ravindran, Y. Kong, Huajian Gao
{"title":"铂标记DNA分子在碳纳米管内的封装。","authors":"Daxiang Cui, C. Ozkan, Sathyajith Ravindran, Y. Kong, Huajian Gao","doi":"10.3970/MCB.2004.001.113","DOIUrl":null,"url":null,"abstract":"Experiments on encapsulating Pt-labelled DNA molecules inside multiwalled carbon nanotubes (MWCNT) were performed under temperature and pressure conditions of 400K and 3 Bar. The DNA-CNT hybrids were purified via agarose gel electrophoresis and analyzed via high resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDX). The results showed that the Pt-labelled DNA molecules attached to the outside walls of CNTs could be removed by electrophoresis. The HR-TEM and EDX results demonstrated that 2-3% of the Pt-labelled DNA molecules were successfully encapsulated inside the MWCNTs. The experimental study complements our previous molecular dynamics simulations on encapsulation of single stranded DNA oligonucleotides inside single wall carbon nanotubes under similar conditions in water. The van der Waals interaction between CNT and Pt-labelled DNA is believed to be the main driving force for this phenomenon. The DNA-CNT molecular complex could be further explored for potential applications in bio-nanotechnology.","PeriodicalId":87411,"journal":{"name":"Mechanics & chemistry of biosystems : MCB","volume":"1 2 1","pages":"113-21"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Encapsulation of pt-labelled DNA molecules inside carbon nanotubes.\",\"authors\":\"Daxiang Cui, C. Ozkan, Sathyajith Ravindran, Y. Kong, Huajian Gao\",\"doi\":\"10.3970/MCB.2004.001.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experiments on encapsulating Pt-labelled DNA molecules inside multiwalled carbon nanotubes (MWCNT) were performed under temperature and pressure conditions of 400K and 3 Bar. The DNA-CNT hybrids were purified via agarose gel electrophoresis and analyzed via high resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDX). The results showed that the Pt-labelled DNA molecules attached to the outside walls of CNTs could be removed by electrophoresis. The HR-TEM and EDX results demonstrated that 2-3% of the Pt-labelled DNA molecules were successfully encapsulated inside the MWCNTs. The experimental study complements our previous molecular dynamics simulations on encapsulation of single stranded DNA oligonucleotides inside single wall carbon nanotubes under similar conditions in water. The van der Waals interaction between CNT and Pt-labelled DNA is believed to be the main driving force for this phenomenon. The DNA-CNT molecular complex could be further explored for potential applications in bio-nanotechnology.\",\"PeriodicalId\":87411,\"journal\":{\"name\":\"Mechanics & chemistry of biosystems : MCB\",\"volume\":\"1 2 1\",\"pages\":\"113-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics & chemistry of biosystems : MCB\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3970/MCB.2004.001.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics & chemistry of biosystems : MCB","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3970/MCB.2004.001.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Encapsulation of pt-labelled DNA molecules inside carbon nanotubes.
Experiments on encapsulating Pt-labelled DNA molecules inside multiwalled carbon nanotubes (MWCNT) were performed under temperature and pressure conditions of 400K and 3 Bar. The DNA-CNT hybrids were purified via agarose gel electrophoresis and analyzed via high resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDX). The results showed that the Pt-labelled DNA molecules attached to the outside walls of CNTs could be removed by electrophoresis. The HR-TEM and EDX results demonstrated that 2-3% of the Pt-labelled DNA molecules were successfully encapsulated inside the MWCNTs. The experimental study complements our previous molecular dynamics simulations on encapsulation of single stranded DNA oligonucleotides inside single wall carbon nanotubes under similar conditions in water. The van der Waals interaction between CNT and Pt-labelled DNA is believed to be the main driving force for this phenomenon. The DNA-CNT molecular complex could be further explored for potential applications in bio-nanotechnology.