求助PDF
{"title":"交叉扩散和logistic源对追逐-逃避模型解的有界性的影响","authors":"Chang-Jian Wang, Zi-Han Zheng","doi":"10.3934/era.2023170","DOIUrl":null,"url":null,"abstract":"We study the following quasilinear pursuit-evasion model: \\begin{document}$ \\begin{equation*} \\left\\{ \\begin{array}{ll} u_{t} = \\Delta u-\\chi\\nabla \\cdot (u(u+1)^{\\alpha}\\nabla w)+u(\\lambda_{1}-\\mu_{1}u^{r_{1}-1}+ av),\\ &\\ \\ x\\in \\Omega, \\ t>0,\\\\[2.5mm] v_{t} = \\Delta v+\\xi\\nabla \\cdot(v(v+1)^{\\beta}\\nabla z)+v(\\lambda_{2}-\\mu_{2}v^{r_{2}-1}-bu), \\ &\\ \\ x\\in \\Omega, \\ t>0,\\\\[2.5mm] 0 = \\Delta w-w+v, \\ &\\ \\ x\\in \\Omega, \\ t>0 ,\\\\[2.5mm] 0 = \\Delta z-z+u,\\ &\\ \\ x\\in \\Omega, \\ t>0 , \\end{array} \\right. \\end{equation*} $\\end{document} in a smooth and bounded domain $ \\Omega\\subset\\mathbb{R}^{n}(n\\geq 1), $ where $ a, b, \\chi, \\xi, \\lambda_{1}, \\lambda_{2}, \\mu_{1}, \\mu_{2} > 0, $ $ \\alpha, \\beta \\in\\mathbb{R}, $ and $ r_{1}, r_{2} > 1. $ When $ r_{1} > \\max\\{1, 1+\\alpha\\}, r_{2} > \\max\\{1, 1+\\beta\\}, $ it has been proved that if $ \\min\\{(r_{1}-1)(r_{2}-\\beta-1), (r_{1}-\\alpha-1)(r_{2}-\\beta-1)\\} > \\frac{(n-2)_{+}}{n}, $ then for some suitable nonnegative initial data $ u_{0} $ and $ v_{0}, $ the system admits a unique globally classical solution which is bounded in $ \\Omega\\times(0, \\infty) $.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of cross-diffusion and logistic source on the boundedness of solutions to a pursuit-evasion model\",\"authors\":\"Chang-Jian Wang, Zi-Han Zheng\",\"doi\":\"10.3934/era.2023170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the following quasilinear pursuit-evasion model: \\\\begin{document}$ \\\\begin{equation*} \\\\left\\\\{ \\\\begin{array}{ll} u_{t} = \\\\Delta u-\\\\chi\\\\nabla \\\\cdot (u(u+1)^{\\\\alpha}\\\\nabla w)+u(\\\\lambda_{1}-\\\\mu_{1}u^{r_{1}-1}+ av),\\\\ &\\\\ \\\\ x\\\\in \\\\Omega, \\\\ t>0,\\\\\\\\[2.5mm] v_{t} = \\\\Delta v+\\\\xi\\\\nabla \\\\cdot(v(v+1)^{\\\\beta}\\\\nabla z)+v(\\\\lambda_{2}-\\\\mu_{2}v^{r_{2}-1}-bu), \\\\ &\\\\ \\\\ x\\\\in \\\\Omega, \\\\ t>0,\\\\\\\\[2.5mm] 0 = \\\\Delta w-w+v, \\\\ &\\\\ \\\\ x\\\\in \\\\Omega, \\\\ t>0 ,\\\\\\\\[2.5mm] 0 = \\\\Delta z-z+u,\\\\ &\\\\ \\\\ x\\\\in \\\\Omega, \\\\ t>0 , \\\\end{array} \\\\right. \\\\end{equation*} $\\\\end{document} in a smooth and bounded domain $ \\\\Omega\\\\subset\\\\mathbb{R}^{n}(n\\\\geq 1), $ where $ a, b, \\\\chi, \\\\xi, \\\\lambda_{1}, \\\\lambda_{2}, \\\\mu_{1}, \\\\mu_{2} > 0, $ $ \\\\alpha, \\\\beta \\\\in\\\\mathbb{R}, $ and $ r_{1}, r_{2} > 1. $ When $ r_{1} > \\\\max\\\\{1, 1+\\\\alpha\\\\}, r_{2} > \\\\max\\\\{1, 1+\\\\beta\\\\}, $ it has been proved that if $ \\\\min\\\\{(r_{1}-1)(r_{2}-\\\\beta-1), (r_{1}-\\\\alpha-1)(r_{2}-\\\\beta-1)\\\\} > \\\\frac{(n-2)_{+}}{n}, $ then for some suitable nonnegative initial data $ u_{0} $ and $ v_{0}, $ the system admits a unique globally classical solution which is bounded in $ \\\\Omega\\\\times(0, \\\\infty) $.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023170\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023170","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
We study the following quasilinear pursuit-evasion model: \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} u_{t} = \Delta u-\chi\nabla \cdot (u(u+1)^{\alpha}\nabla w)+u(\lambda_{1}-\mu_{1}u^{r_{1}-1}+ av),\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] v_{t} = \Delta v+\xi\nabla \cdot(v(v+1)^{\beta}\nabla z)+v(\lambda_{2}-\mu_{2}v^{r_{2}-1}-bu), \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w-w+v, \ &\ \ x\in \Omega, \ t>0 ,\\[2.5mm] 0 = \Delta z-z+u,\ &\ \ x\in \Omega, \ t>0 , \end{array} \right. \end{equation*} $\end{document} in a smooth and bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq 1), $ where $ a, b, \chi, \xi, \lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} > 0, $ $ \alpha, \beta \in\mathbb{R}, $ and $ r_{1}, r_{2} > 1. $ When $ r_{1} > \max\{1, 1+\alpha\}, r_{2} > \max\{1, 1+\beta\}, $ it has been proved that if $ \min\{(r_{1}-1)(r_{2}-\beta-1), (r_{1}-\alpha-1)(r_{2}-\beta-1)\} > \frac{(n-2)_{+}}{n}, $ then for some suitable nonnegative initial data $ u_{0} $ and $ v_{0}, $ the system admits a unique globally classical solution which is bounded in $ \Omega\times(0, \infty) $.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effects of cross-diffusion and logistic source on the boundedness of solutions to a pursuit-evasion model
We study the following quasilinear pursuit-evasion model: \begin{document}$ \begin{equation*} \left\{ \begin{array}{ll} u_{t} = \Delta u-\chi\nabla \cdot (u(u+1)^{\alpha}\nabla w)+u(\lambda_{1}-\mu_{1}u^{r_{1}-1}+ av),\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] v_{t} = \Delta v+\xi\nabla \cdot(v(v+1)^{\beta}\nabla z)+v(\lambda_{2}-\mu_{2}v^{r_{2}-1}-bu), \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w-w+v, \ &\ \ x\in \Omega, \ t>0 ,\\[2.5mm] 0 = \Delta z-z+u,\ &\ \ x\in \Omega, \ t>0 , \end{array} \right. \end{equation*} $\end{document} in a smooth and bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq 1), $ where $ a, b, \chi, \xi, \lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} > 0, $ $ \alpha, \beta \in\mathbb{R}, $ and $ r_{1}, r_{2} > 1. $ When $ r_{1} > \max\{1, 1+\alpha\}, r_{2} > \max\{1, 1+\beta\}, $ it has been proved that if $ \min\{(r_{1}-1)(r_{2}-\beta-1), (r_{1}-\alpha-1)(r_{2}-\beta-1)\} > \frac{(n-2)_{+}}{n}, $ then for some suitable nonnegative initial data $ u_{0} $ and $ v_{0}, $ the system admits a unique globally classical solution which is bounded in $ \Omega\times(0, \infty) $.