{"title":"考虑实测温度场和车流量分布的冷再生沥青路面疲劳损伤计算","authors":"Zhao Dong, Z. Sai, Jinglin Zhang, Guangji Xu","doi":"10.3934/era.2023189","DOIUrl":null,"url":null,"abstract":"A finite element simulation method for fatigue damage calculation and life prediction of pavement structures under the influence of temperature and traffic distribution factors was proposed in this study. Relying on the test cold recycled asphalt pavement structure, the existing distress, pavement structure forms, field monitored temperature and strain were first introduced and analyzed. Then, in constructing the numerical model, the viscoelastic constitutive model was introduced to characterize the effect of temperature and loading conditions on the mechanical response of the hot mix asphalt (HMA) layers and the emulsified asphalt cold recycled (EACR) layer. The damage variables are defined by fatigue equations, and the damage accumulation can be determined by Miner's linear fatigue accumulation theory. To reflect the distribution of traffic volume, the total traffic volume of a year was divided into 144 axle load groups according to the monthly and hourly distribution conditions. Accordingly, based on the monthly maximum and minimum temperature, 12 representative days were selected to represent the climate characteristics of 12 months, respectively. Then, each representative day's measured structural temperature data were extracted every 2 hours and linearly interpolated to obtain 144 representative temperature fields corresponding to 144 axle load groups. Through the above method, simulation calculations were performed for cold recycled asphalt pavement structures with different cement-stabilized aggregate (CSA) base stiffnesses. The results show that the fatigue damage accumulation of the EACR layers reaches its highest value in winter and midday hours, owing to the temperature variation and traffic distribution. Due to the weak fatigue resistance of EACR mixtures, it is not recommended to be paved EACR layers directly on top of the CSA base with poor bearing capacity. Otherwise, fatigue cracking is likely to occur first. For this reason, recommendations for ensuring the durability of the cold recycled pavement structure were also proposed in the study.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue damage calculation of cold recycled asphalt pavement considering measured temperature field and traffic volume distribution\",\"authors\":\"Zhao Dong, Z. Sai, Jinglin Zhang, Guangji Xu\",\"doi\":\"10.3934/era.2023189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite element simulation method for fatigue damage calculation and life prediction of pavement structures under the influence of temperature and traffic distribution factors was proposed in this study. Relying on the test cold recycled asphalt pavement structure, the existing distress, pavement structure forms, field monitored temperature and strain were first introduced and analyzed. Then, in constructing the numerical model, the viscoelastic constitutive model was introduced to characterize the effect of temperature and loading conditions on the mechanical response of the hot mix asphalt (HMA) layers and the emulsified asphalt cold recycled (EACR) layer. The damage variables are defined by fatigue equations, and the damage accumulation can be determined by Miner's linear fatigue accumulation theory. To reflect the distribution of traffic volume, the total traffic volume of a year was divided into 144 axle load groups according to the monthly and hourly distribution conditions. Accordingly, based on the monthly maximum and minimum temperature, 12 representative days were selected to represent the climate characteristics of 12 months, respectively. Then, each representative day's measured structural temperature data were extracted every 2 hours and linearly interpolated to obtain 144 representative temperature fields corresponding to 144 axle load groups. Through the above method, simulation calculations were performed for cold recycled asphalt pavement structures with different cement-stabilized aggregate (CSA) base stiffnesses. The results show that the fatigue damage accumulation of the EACR layers reaches its highest value in winter and midday hours, owing to the temperature variation and traffic distribution. Due to the weak fatigue resistance of EACR mixtures, it is not recommended to be paved EACR layers directly on top of the CSA base with poor bearing capacity. Otherwise, fatigue cracking is likely to occur first. For this reason, recommendations for ensuring the durability of the cold recycled pavement structure were also proposed in the study.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023189\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023189","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fatigue damage calculation of cold recycled asphalt pavement considering measured temperature field and traffic volume distribution
A finite element simulation method for fatigue damage calculation and life prediction of pavement structures under the influence of temperature and traffic distribution factors was proposed in this study. Relying on the test cold recycled asphalt pavement structure, the existing distress, pavement structure forms, field monitored temperature and strain were first introduced and analyzed. Then, in constructing the numerical model, the viscoelastic constitutive model was introduced to characterize the effect of temperature and loading conditions on the mechanical response of the hot mix asphalt (HMA) layers and the emulsified asphalt cold recycled (EACR) layer. The damage variables are defined by fatigue equations, and the damage accumulation can be determined by Miner's linear fatigue accumulation theory. To reflect the distribution of traffic volume, the total traffic volume of a year was divided into 144 axle load groups according to the monthly and hourly distribution conditions. Accordingly, based on the monthly maximum and minimum temperature, 12 representative days were selected to represent the climate characteristics of 12 months, respectively. Then, each representative day's measured structural temperature data were extracted every 2 hours and linearly interpolated to obtain 144 representative temperature fields corresponding to 144 axle load groups. Through the above method, simulation calculations were performed for cold recycled asphalt pavement structures with different cement-stabilized aggregate (CSA) base stiffnesses. The results show that the fatigue damage accumulation of the EACR layers reaches its highest value in winter and midday hours, owing to the temperature variation and traffic distribution. Due to the weak fatigue resistance of EACR mixtures, it is not recommended to be paved EACR layers directly on top of the CSA base with poor bearing capacity. Otherwise, fatigue cracking is likely to occur first. For this reason, recommendations for ensuring the durability of the cold recycled pavement structure were also proposed in the study.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.