考虑托运人选择惯性和空箱搬迁的班轮联盟运输网络设计模型

IF 1 4区 数学 Q1 MATHEMATICS Electronic Research Archive Pub Date : 2023-01-01 DOI:10.3934/era.2023280
Xu Xin, Xiaoli Wang, Zhang Tao, Haichao Chen, Qian Guo, Shaorui Zhou
{"title":"考虑托运人选择惯性和空箱搬迁的班轮联盟运输网络设计模型","authors":"Xu Xin, Xiaoli Wang, Zhang Tao, Haichao Chen, Qian Guo, Shaorui Zhou","doi":"10.3934/era.2023280","DOIUrl":null,"url":null,"abstract":"Liner companies have responded to escalating trade conflicts and the impact of the COVID-19 pandemic by forming alliances and implementing streamlined approaches to manage empty containers, which has strengthened the resilience of their supply chains. Meanwhile, shippers have grown more sensitive during these turbulent times. Motivated by the market situation, we investigate a liner alliance shipping network design problem considering the choice inertia of shippers and empty container relocation. To address this problem, we propose a bilevel programming model. The upper model aims to maximize the alliance's profit by optimizing the alliance's shipping network and fleet design scheme. The lower model focuses on optimizing the slot allocation scheme and the empty container relocation scheme. To ensure the sustainable operation of the alliance, we develop an inverse optimization model to allocate profits among alliance members. Furthermore, we design a differential evolution metaheuristic algorithm to solve the model. To validate the effectiveness of the proposed model and algorithm, numerical experiments are conducted using actual shipping data from the Asia-Western Europe shipping route. The results confirm the validity of the proposed model and algorithm, which can serve as a crucial decision-making reference for the daily operations of a liner shipping alliance.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Liner alliance shipping network design model with shippers' choice inertia and empty container relocation\",\"authors\":\"Xu Xin, Xiaoli Wang, Zhang Tao, Haichao Chen, Qian Guo, Shaorui Zhou\",\"doi\":\"10.3934/era.2023280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liner companies have responded to escalating trade conflicts and the impact of the COVID-19 pandemic by forming alliances and implementing streamlined approaches to manage empty containers, which has strengthened the resilience of their supply chains. Meanwhile, shippers have grown more sensitive during these turbulent times. Motivated by the market situation, we investigate a liner alliance shipping network design problem considering the choice inertia of shippers and empty container relocation. To address this problem, we propose a bilevel programming model. The upper model aims to maximize the alliance's profit by optimizing the alliance's shipping network and fleet design scheme. The lower model focuses on optimizing the slot allocation scheme and the empty container relocation scheme. To ensure the sustainable operation of the alliance, we develop an inverse optimization model to allocate profits among alliance members. Furthermore, we design a differential evolution metaheuristic algorithm to solve the model. To validate the effectiveness of the proposed model and algorithm, numerical experiments are conducted using actual shipping data from the Asia-Western Europe shipping route. The results confirm the validity of the proposed model and algorithm, which can serve as a crucial decision-making reference for the daily operations of a liner shipping alliance.\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023280\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023280","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

班轮公司为应对不断升级的贸易冲突和2019冠状病毒病大流行的影响,结成了联盟,并采用了简化的方法来管理空集装箱,从而增强了其供应链的抵御能力。与此同时,托运人在动荡时期变得更加敏感。在市场形势的激励下,研究了考虑托运人选择惯性和空箱搬迁的班轮联盟运输网络设计问题。为了解决这个问题,我们提出了一个双层规划模型。上层模型旨在通过优化联盟的航运网络和船队设计方案,使联盟的利润最大化。下一模型着重于优化槽位分配方案和空箱搬迁方案。为了保证联盟的可持续运行,我们建立了一个逆向优化模型来分配联盟成员之间的利润。此外,我们设计了一个差分进化元启发式算法来求解该模型。为了验证所提模型和算法的有效性,利用亚洲-西欧航线的实际航运数据进行了数值实验。研究结果验证了模型和算法的有效性,为班轮运输联盟的日常运营提供了重要的决策参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Liner alliance shipping network design model with shippers' choice inertia and empty container relocation
Liner companies have responded to escalating trade conflicts and the impact of the COVID-19 pandemic by forming alliances and implementing streamlined approaches to manage empty containers, which has strengthened the resilience of their supply chains. Meanwhile, shippers have grown more sensitive during these turbulent times. Motivated by the market situation, we investigate a liner alliance shipping network design problem considering the choice inertia of shippers and empty container relocation. To address this problem, we propose a bilevel programming model. The upper model aims to maximize the alliance's profit by optimizing the alliance's shipping network and fleet design scheme. The lower model focuses on optimizing the slot allocation scheme and the empty container relocation scheme. To ensure the sustainable operation of the alliance, we develop an inverse optimization model to allocate profits among alliance members. Furthermore, we design a differential evolution metaheuristic algorithm to solve the model. To validate the effectiveness of the proposed model and algorithm, numerical experiments are conducted using actual shipping data from the Asia-Western Europe shipping route. The results confirm the validity of the proposed model and algorithm, which can serve as a crucial decision-making reference for the daily operations of a liner shipping alliance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
170
期刊最新文献
On $ p $-Laplacian Kirchhoff-Schrödinger-Poisson type systems with critical growth on the Heisenberg group Fredholm inversion around a singularity: Application to autoregressive time series in Banach space Local well-posedness of perturbed Navier-Stokes system around Landau solutions From basic approaches to novel challenges and applications in Sequential Pattern Mining A preconditioned new modulus-based matrix splitting method for solving linear complementarity problem of $ H_+ $-matrices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1