基于变分贝叶斯和矩阵-变量狄利克雷过程的灵活在线多元回归

IF 1.7 Q2 MATHEMATICS, APPLIED Foundations of data science (Springfield, Mo.) Pub Date : 2016-02-29 DOI:10.3934/FODS.2019006
Meng Hwee Victor Ong, D. Nott, A. Jasra
{"title":"基于变分贝叶斯和矩阵-变量狄利克雷过程的灵活在线多元回归","authors":"Meng Hwee Victor Ong, D. Nott, A. Jasra","doi":"10.3934/FODS.2019006","DOIUrl":null,"url":null,"abstract":"Flexible regression methods where interest centres on the way that the whole distribution of a response vector changes with covariates are very useful in some applications. A recently developed technique in this regard uses the matrix-variate Dirichlet process as a prior for a mixing distribution on a coefficient in a multivariate linear regression model. The method is attractive, particularly in the multivariate setting, for the convenient way that it allows for borrowing strength across different component regressions and for its computational simplicity and tractability. The purpose of the present article is to develop fast online variational Bayes approaches to fitting this model and to investigate how they perform compared to MCMC and batch variational methods in a number of scenarios.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2016-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible online multivariate regression with variational Bayes and the matrix-variate Dirichlet process\",\"authors\":\"Meng Hwee Victor Ong, D. Nott, A. Jasra\",\"doi\":\"10.3934/FODS.2019006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible regression methods where interest centres on the way that the whole distribution of a response vector changes with covariates are very useful in some applications. A recently developed technique in this regard uses the matrix-variate Dirichlet process as a prior for a mixing distribution on a coefficient in a multivariate linear regression model. The method is attractive, particularly in the multivariate setting, for the convenient way that it allows for borrowing strength across different component regressions and for its computational simplicity and tractability. The purpose of the present article is to develop fast online variational Bayes approaches to fitting this model and to investigate how they perform compared to MCMC and batch variational methods in a number of scenarios.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2016-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/FODS.2019006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/FODS.2019006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在某些应用中,关注响应向量的整个分布随协变量变化的灵活回归方法是非常有用的。在这方面,最近发展的一种技术使用矩阵-变量狄利克雷过程作为多元线性回归模型中系数混合分布的先验。该方法很有吸引力,特别是在多变量设置中,因为它允许在不同的组件回归中借用强度的方便方式,以及它的计算简单性和可追溯性。本文的目的是开发快速的在线变分贝叶斯方法来拟合该模型,并研究它们与MCMC和批变分方法在许多场景中的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible online multivariate regression with variational Bayes and the matrix-variate Dirichlet process
Flexible regression methods where interest centres on the way that the whole distribution of a response vector changes with covariates are very useful in some applications. A recently developed technique in this regard uses the matrix-variate Dirichlet process as a prior for a mixing distribution on a coefficient in a multivariate linear regression model. The method is attractive, particularly in the multivariate setting, for the convenient way that it allows for borrowing strength across different component regressions and for its computational simplicity and tractability. The purpose of the present article is to develop fast online variational Bayes approaches to fitting this model and to investigate how they perform compared to MCMC and batch variational methods in a number of scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
CHATGPT FOR COMPUTATIONAL TOPOLOGY. PERSISTENT PATH LAPLACIAN. Weight set decomposition for weighted rank and rating aggregation: An interpretable and visual decision support tool Hierarchical regularization networks for sparsification based learning on noisy datasets Noise calibration for SPDEs: A case study for the rotating shallow water model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1