Jun Guo, Yanchao Shi, Weihua Luo, Yanzhao Cheng, Shengye Wang
{"title":"具有时滞的四元数忆阻器神经网络的指数投影同步分析","authors":"Jun Guo, Yanchao Shi, Weihua Luo, Yanzhao Cheng, Shengye Wang","doi":"10.3934/era.2023285","DOIUrl":null,"url":null,"abstract":"The issues of exponential projective synchronization and adaptive exponential projective synchronization are analyzed for quaternion-valued memristor-based neural networks (QVMNNs) with time delays. Different from the results of existing decomposition techniques, a direct analytical approach is used to discuss the projection synchronization problem. First, in the framework of measurable selection and differential inclusion, the QVMNNs is transformed into a system with parametric uncertainty. Next, the sign function related to quaternion is introduced. Different proper control schemes are designed and several criteria for ascertaining exponential projective synchronization and adaptive exponential projective synchronization are derived based on Lyapunov theory and the properties of sign function. Furthermore, several corollaries about global projective synchronization are proposed. Finally, the reliability and validity of our results are substantiated by two numerical examples and its corresponding simulation.","PeriodicalId":48554,"journal":{"name":"Electronic Research Archive","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential projective synchronization analysis for quaternion-valued memristor-based neural networks with time delays\",\"authors\":\"Jun Guo, Yanchao Shi, Weihua Luo, Yanzhao Cheng, Shengye Wang\",\"doi\":\"10.3934/era.2023285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issues of exponential projective synchronization and adaptive exponential projective synchronization are analyzed for quaternion-valued memristor-based neural networks (QVMNNs) with time delays. Different from the results of existing decomposition techniques, a direct analytical approach is used to discuss the projection synchronization problem. First, in the framework of measurable selection and differential inclusion, the QVMNNs is transformed into a system with parametric uncertainty. Next, the sign function related to quaternion is introduced. Different proper control schemes are designed and several criteria for ascertaining exponential projective synchronization and adaptive exponential projective synchronization are derived based on Lyapunov theory and the properties of sign function. Furthermore, several corollaries about global projective synchronization are proposed. Finally, the reliability and validity of our results are substantiated by two numerical examples and its corresponding simulation.\",\"PeriodicalId\":48554,\"journal\":{\"name\":\"Electronic Research Archive\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Research Archive\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023285\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Research Archive","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023285","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Exponential projective synchronization analysis for quaternion-valued memristor-based neural networks with time delays
The issues of exponential projective synchronization and adaptive exponential projective synchronization are analyzed for quaternion-valued memristor-based neural networks (QVMNNs) with time delays. Different from the results of existing decomposition techniques, a direct analytical approach is used to discuss the projection synchronization problem. First, in the framework of measurable selection and differential inclusion, the QVMNNs is transformed into a system with parametric uncertainty. Next, the sign function related to quaternion is introduced. Different proper control schemes are designed and several criteria for ascertaining exponential projective synchronization and adaptive exponential projective synchronization are derived based on Lyapunov theory and the properties of sign function. Furthermore, several corollaries about global projective synchronization are proposed. Finally, the reliability and validity of our results are substantiated by two numerical examples and its corresponding simulation.