Lei Ma, Weiyu Wang, Yaozong Zhang, Yu Shi, Zhenghua Huang, Hanyu Hong
{"title":"关键帧提取的多特征组合优化","authors":"Lei Ma, Weiyu Wang, Yaozong Zhang, Yu Shi, Zhenghua Huang, Hanyu Hong","doi":"10.3934/era.2023304","DOIUrl":null,"url":null,"abstract":"Recent advancements in network and multimedia technologies have facilitated the distribution and sharing of digital videos over the Internet. These long videos contain very complex contents. Additionally, it is very challenging to use as few frames as possible to cover the video contents without missing too much information. There are at least two ways to describe these complex videos contents with minimal frames: the keyframes extracted from the video or the video summary. The former lays stress on covering the whole video contents as much as possible. The latter emphasizes covering the video contents of interest. As a consequence, keyframes are widely used in many areas such as video segmentation and object tracking. In this paper, we propose a keyframe extraction method based on multiple features via a novel combinatorial optimization algorithm. The key frame extraction is modeled as a combinatorial optimization problem. A fast dynamic programming algorithm based on a forward non-overlapping transfer matrix in polynomial time and a 0-1 integer linear programming algorithm based on an overlapping matrix is proposed to solve our maximization problem. In order to quantitatively evaluate our approach, a long video dataset named 'Animal world' is self-constructed, and the segmentation evaluation criterions are introduced. A good result is achieved on 'Animal world' dataset and a public available Keyframe-Sydney KFSYD dataset [1].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-features combinatorial optimization for keyframe extraction\",\"authors\":\"Lei Ma, Weiyu Wang, Yaozong Zhang, Yu Shi, Zhenghua Huang, Hanyu Hong\",\"doi\":\"10.3934/era.2023304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in network and multimedia technologies have facilitated the distribution and sharing of digital videos over the Internet. These long videos contain very complex contents. Additionally, it is very challenging to use as few frames as possible to cover the video contents without missing too much information. There are at least two ways to describe these complex videos contents with minimal frames: the keyframes extracted from the video or the video summary. The former lays stress on covering the whole video contents as much as possible. The latter emphasizes covering the video contents of interest. As a consequence, keyframes are widely used in many areas such as video segmentation and object tracking. In this paper, we propose a keyframe extraction method based on multiple features via a novel combinatorial optimization algorithm. The key frame extraction is modeled as a combinatorial optimization problem. A fast dynamic programming algorithm based on a forward non-overlapping transfer matrix in polynomial time and a 0-1 integer linear programming algorithm based on an overlapping matrix is proposed to solve our maximization problem. In order to quantitatively evaluate our approach, a long video dataset named 'Animal world' is self-constructed, and the segmentation evaluation criterions are introduced. A good result is achieved on 'Animal world' dataset and a public available Keyframe-Sydney KFSYD dataset [1].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/era.2023304\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/era.2023304","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-features combinatorial optimization for keyframe extraction
Recent advancements in network and multimedia technologies have facilitated the distribution and sharing of digital videos over the Internet. These long videos contain very complex contents. Additionally, it is very challenging to use as few frames as possible to cover the video contents without missing too much information. There are at least two ways to describe these complex videos contents with minimal frames: the keyframes extracted from the video or the video summary. The former lays stress on covering the whole video contents as much as possible. The latter emphasizes covering the video contents of interest. As a consequence, keyframes are widely used in many areas such as video segmentation and object tracking. In this paper, we propose a keyframe extraction method based on multiple features via a novel combinatorial optimization algorithm. The key frame extraction is modeled as a combinatorial optimization problem. A fast dynamic programming algorithm based on a forward non-overlapping transfer matrix in polynomial time and a 0-1 integer linear programming algorithm based on an overlapping matrix is proposed to solve our maximization problem. In order to quantitatively evaluate our approach, a long video dataset named 'Animal world' is self-constructed, and the segmentation evaluation criterions are introduced. A good result is achieved on 'Animal world' dataset and a public available Keyframe-Sydney KFSYD dataset [1].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.