{"title":"神经干细胞衍生的肿瘤发生","authors":"Francesca Froldi, M. Szuperak, Louise Y. Cheng","doi":"10.3934/genet.2015.1.13","DOIUrl":null,"url":null,"abstract":"Abstract In the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we will discuss our current understanding of how self-renewal and differentiation are regulated in the two neural stem cell pools, and the consequences of the deregulation of these processes.","PeriodicalId":43477,"journal":{"name":"AIMS Genetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural stem cell derived tumourigenesis\",\"authors\":\"Francesca Froldi, M. Szuperak, Louise Y. Cheng\",\"doi\":\"10.3934/genet.2015.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we will discuss our current understanding of how self-renewal and differentiation are regulated in the two neural stem cell pools, and the consequences of the deregulation of these processes.\",\"PeriodicalId\":43477,\"journal\":{\"name\":\"AIMS Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/genet.2015.1.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/genet.2015.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract In the developing Drosophila CNS, two pools of neural stem cells, the symmetrically dividing progenitors in the neuroepithelium (NE) and the asymmetrically dividing neuroblasts (NBs) generate the majority of the neurons that make up the adult central nervous system (CNS). The generation of a correct sized brain depends on maintaining the fine balance between neural stem cell self-renewal and differentiation, which are regulated by cell-intrinsic and cell-extrinsic cues. In this review, we will discuss our current understanding of how self-renewal and differentiation are regulated in the two neural stem cell pools, and the consequences of the deregulation of these processes.