{"title":"基于体积平均理论的血液透析治疗操作条件","authors":"Y. Sano","doi":"10.4036/IIS.2016.A.04","DOIUrl":null,"url":null,"abstract":"The effect of operating conditions on the clearance of a countercurrent hollow fiber dialyzer has been investigated by utilizing the membrane transport model based on the volume averaging theory. The three-dimensional numerical method for describing the mass transport phenomena within a hollow fiber membrane dialyzer has been proposed to estimate performances under the several volume flow rates for blood and dialysate phases. Clearances obtained from the present numerical simulation are compared against available set of experimental data to elucidate the validity of the present three-dimensional numerical method. A series of calculations reveal the effect of the volume flow rate for blood and dialysate phases on urea clearance under the several total ultrafiltration rates. Moreover, the removal efficiency, which is the ratio of the mass flow rate of urea removed from the blood phase within a dialyzer to that at the blood phase inlet, is introduced in order to estimate an appropriate volume flow rate for blood and dialysate phases in the hemodialysis treatment. The present study clearly indicates that the present numerical method is quite useful for determining the best clinical protocol of the hemodialysis treatment and developing new dialysis systems such as home hemodialysis, nocturnal dialysis and even wearable artificial kidney.","PeriodicalId":91087,"journal":{"name":"Interdisciplinary information sciences","volume":"22 1","pages":"215-227"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4036/IIS.2016.A.04","citationCount":"2","resultStr":"{\"title\":\"Operating Conditions for the Hemodialysis Treatment Based on the Volume Averaging Theory\",\"authors\":\"Y. Sano\",\"doi\":\"10.4036/IIS.2016.A.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of operating conditions on the clearance of a countercurrent hollow fiber dialyzer has been investigated by utilizing the membrane transport model based on the volume averaging theory. The three-dimensional numerical method for describing the mass transport phenomena within a hollow fiber membrane dialyzer has been proposed to estimate performances under the several volume flow rates for blood and dialysate phases. Clearances obtained from the present numerical simulation are compared against available set of experimental data to elucidate the validity of the present three-dimensional numerical method. A series of calculations reveal the effect of the volume flow rate for blood and dialysate phases on urea clearance under the several total ultrafiltration rates. Moreover, the removal efficiency, which is the ratio of the mass flow rate of urea removed from the blood phase within a dialyzer to that at the blood phase inlet, is introduced in order to estimate an appropriate volume flow rate for blood and dialysate phases in the hemodialysis treatment. The present study clearly indicates that the present numerical method is quite useful for determining the best clinical protocol of the hemodialysis treatment and developing new dialysis systems such as home hemodialysis, nocturnal dialysis and even wearable artificial kidney.\",\"PeriodicalId\":91087,\"journal\":{\"name\":\"Interdisciplinary information sciences\",\"volume\":\"22 1\",\"pages\":\"215-227\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4036/IIS.2016.A.04\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary information sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4036/IIS.2016.A.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary information sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4036/IIS.2016.A.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operating Conditions for the Hemodialysis Treatment Based on the Volume Averaging Theory
The effect of operating conditions on the clearance of a countercurrent hollow fiber dialyzer has been investigated by utilizing the membrane transport model based on the volume averaging theory. The three-dimensional numerical method for describing the mass transport phenomena within a hollow fiber membrane dialyzer has been proposed to estimate performances under the several volume flow rates for blood and dialysate phases. Clearances obtained from the present numerical simulation are compared against available set of experimental data to elucidate the validity of the present three-dimensional numerical method. A series of calculations reveal the effect of the volume flow rate for blood and dialysate phases on urea clearance under the several total ultrafiltration rates. Moreover, the removal efficiency, which is the ratio of the mass flow rate of urea removed from the blood phase within a dialyzer to that at the blood phase inlet, is introduced in order to estimate an appropriate volume flow rate for blood and dialysate phases in the hemodialysis treatment. The present study clearly indicates that the present numerical method is quite useful for determining the best clinical protocol of the hemodialysis treatment and developing new dialysis systems such as home hemodialysis, nocturnal dialysis and even wearable artificial kidney.