新加坡石油工业硫排放对超细颗粒数浓度的影响

IF 2.5 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Aerosol and Air Quality Research Pub Date : 2023-01-01 DOI:10.4209/aaqr.220265
Suyi Hou, Weihan Li, Liudongqing Yang, Guorong Chen, Yilin Zhang, M. Kuwata
{"title":"新加坡石油工业硫排放对超细颗粒数浓度的影响","authors":"Suyi Hou, Weihan Li, Liudongqing Yang, Guorong Chen, Yilin Zhang, M. Kuwata","doi":"10.4209/aaqr.220265","DOIUrl":null,"url":null,"abstract":"Ultrafine particles, defined as particles with a diameter ( d p ) smaller than 100 nm, serve as an important component of cloud condensation nuclei, in addition to impacting human health. The dominant sources of ultrafine particles include traffic emissions and nucleation. Singapore is a tropical city that hosts petrochemical industries. To identify the sources of ultrafine particles, a year-long observation of the number size distribution was conducted in Singapore in 2018 and 2019. The concentrations of CO, CO 2 , CH 4 , and SO 2 were also monitored. The particle number concentration during the southwest monsoon season was high, while that during the northeast monsoon period was relatively low. The CO concentration increased during the morning traffic rush hours, which was associated with relatively minor enhancements in ultrafine particle number concentration. The events for a high number concentration of the Aitken mode particles ( d p < 50 nm) were identified during high SO 2 concentration periods. The SO 2 concentration was high during the afternoon because the sea breeze transported the emissions from the coastal industrial area to the observation site. The enhancements in CH 4 from its background level ( Δ CH 4 ) and SO 2 had a quasi-inverse relationship, as the major emission sources of these two chemical species were different. The particle number concentration ( d p > 50 nm) correlated with the enhancements in CO concentration ( Δ CO) for CH 4 -dominant air masses, suggesting that incomplete combustion processes, such as traffic emission, are important for the size range. Conversely, the number concentration of the Aitken mode particles ( d p < 50 nm) increased for SO 2 -dominant air masses, suggesting the importance of industrial plume.","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Role of Sulfur Emission from the Petroleum Industry on Ultrafine Particle Number Concentration in Singapore\",\"authors\":\"Suyi Hou, Weihan Li, Liudongqing Yang, Guorong Chen, Yilin Zhang, M. Kuwata\",\"doi\":\"10.4209/aaqr.220265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrafine particles, defined as particles with a diameter ( d p ) smaller than 100 nm, serve as an important component of cloud condensation nuclei, in addition to impacting human health. The dominant sources of ultrafine particles include traffic emissions and nucleation. Singapore is a tropical city that hosts petrochemical industries. To identify the sources of ultrafine particles, a year-long observation of the number size distribution was conducted in Singapore in 2018 and 2019. The concentrations of CO, CO 2 , CH 4 , and SO 2 were also monitored. The particle number concentration during the southwest monsoon season was high, while that during the northeast monsoon period was relatively low. The CO concentration increased during the morning traffic rush hours, which was associated with relatively minor enhancements in ultrafine particle number concentration. The events for a high number concentration of the Aitken mode particles ( d p < 50 nm) were identified during high SO 2 concentration periods. The SO 2 concentration was high during the afternoon because the sea breeze transported the emissions from the coastal industrial area to the observation site. The enhancements in CH 4 from its background level ( Δ CH 4 ) and SO 2 had a quasi-inverse relationship, as the major emission sources of these two chemical species were different. The particle number concentration ( d p > 50 nm) correlated with the enhancements in CO concentration ( Δ CO) for CH 4 -dominant air masses, suggesting that incomplete combustion processes, such as traffic emission, are important for the size range. Conversely, the number concentration of the Aitken mode particles ( d p < 50 nm) increased for SO 2 -dominant air masses, suggesting the importance of industrial plume.\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.220265\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.220265","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

17超细颗粒,定义为直径(dp)小于100纳米的颗粒,除了影响人体健康外,还是云凝结核的重要组成部分。19超细颗粒的主要来源包括交通排放和成核。新加坡是一个拥有石油化工产业的热带城市。为了确定超细颗粒的来源,2018年和2019年22日在新加坡进行了为期21年的数量大小分布观察。还监测了CO、CO 2、ch4和so2的浓度。西南季风季23号粒子浓度较高,东北季风季23号粒子浓度相对较低。CO浓度在早高峰时段有所上升,这与超细颗粒物浓度的小幅上升有关。高浓度的Aitken模式粒子27 (d p < 50 nm)事件发生在so2高浓度时期。下午so2浓度较高,主要是由于海风将沿海工业区的排放物输送到观测点。背景浓度30 (ΔCH 4)对ch4的增强与so2的增强呈准反比关系,因为这31种化学物质的主要排放源不同。颗粒数浓度(d p > 50 nm)与ch4主导气团CO浓度的升高(ΔCO)相关,表明33个不完全燃烧过程,如交通排放,对尺寸范围很重要。34相反,35个so2主导气团的艾特肯模式粒子(d p < 50 nm)的数量浓度增加,表明工业羽流的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Sulfur Emission from the Petroleum Industry on Ultrafine Particle Number Concentration in Singapore
Ultrafine particles, defined as particles with a diameter ( d p ) smaller than 100 nm, serve as an important component of cloud condensation nuclei, in addition to impacting human health. The dominant sources of ultrafine particles include traffic emissions and nucleation. Singapore is a tropical city that hosts petrochemical industries. To identify the sources of ultrafine particles, a year-long observation of the number size distribution was conducted in Singapore in 2018 and 2019. The concentrations of CO, CO 2 , CH 4 , and SO 2 were also monitored. The particle number concentration during the southwest monsoon season was high, while that during the northeast monsoon period was relatively low. The CO concentration increased during the morning traffic rush hours, which was associated with relatively minor enhancements in ultrafine particle number concentration. The events for a high number concentration of the Aitken mode particles ( d p < 50 nm) were identified during high SO 2 concentration periods. The SO 2 concentration was high during the afternoon because the sea breeze transported the emissions from the coastal industrial area to the observation site. The enhancements in CH 4 from its background level ( Δ CH 4 ) and SO 2 had a quasi-inverse relationship, as the major emission sources of these two chemical species were different. The particle number concentration ( d p > 50 nm) correlated with the enhancements in CO concentration ( Δ CO) for CH 4 -dominant air masses, suggesting that incomplete combustion processes, such as traffic emission, are important for the size range. Conversely, the number concentration of the Aitken mode particles ( d p < 50 nm) increased for SO 2 -dominant air masses, suggesting the importance of industrial plume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol and Air Quality Research
Aerosol and Air Quality Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
10.00%
发文量
163
审稿时长
3 months
期刊介绍: The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including: - Aerosol, air quality, atmospheric chemistry and global change; - Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure; - Nanoparticle and nanotechnology; - Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis; - Effects on the environments; - Air quality and human health; - Bioaerosols; - Indoor air quality; - Energy and air pollution; - Pollution control technologies; - Invention and improvement of sampling instruments and technologies; - Optical/radiative properties and remote sensing; - Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission; - Other topics related to aerosol and air quality.
期刊最新文献
Ambient PM2.5 temporal variation and source apportionment in Mbarara, Uganda. Real-World Effectiveness of Portable Air Cleaners in Reducing Home Particulate Matter Concentrations. Effect of Future Climate Change on Stratosphere-to-Troposphere-Exchange Driven Ozone in the Northern Hemisphere. Effects of E-Cigarette Liquid Ratios on the Gravimetric Filter Correction Factors and Real-Time Measurements. Composition Analysis of Airborne Microbiota in Outdoor and Indoor Based on Dust Separated by Micro-sized and Nano-sized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1