气候变化影响下曹河流域滑坡易感性的物理模型评价

T. Le, Seiki Kawagoe
{"title":"气候变化影响下曹河流域滑坡易感性的物理模型评价","authors":"T. Le, Seiki Kawagoe","doi":"10.4236/OJMH.2019.91001","DOIUrl":null,"url":null,"abstract":"This paper evaluated the probability of landslide susceptibilities through the applica-tion of the Transient Rainfall Infiltration and Grid-Based Region Slope-Stability model in Cau river basin (Vietnam) using the scenarios-based approach under the influence of the warming climate. The tested cases were developed based on various options including rainfall amount and distribution, soil depth determination, and land-cover conditions. Input data for extreme rain events included historical rainstorm in 2013, the Probable Maximum Precipitation (PMP) with the durations of 24 hours and 48 hours. The results illustrated the reduction of slope stability when the land cover changed from land-use data in 2007 (Ha12) to land-use data in 2015 (Ha22). When the whole region was assumed to be replaced by soil (Ha02), the factor of safety (Fs) decreased to lower magnitude when compared to Fs value regarding to changes in land cover condition (Ha12 & Ha22) and changes in soil-depth (Ha33). The model simulations demonstrated the agreement with the slope-failure hazard association with the destabilizing factor such as slope-cutting activities at historical landslide events. Under the same land-cover and soil depth condition, the average value of factor of safety regarding to the historical rainstorm in 2013 (Ha32) declined by 0.069 and 0.189 when compared to Fs of the 24-hour PMP with the storm distribution type 3 (1332) and Fs of the 48-hour PMP with the storm distribution type 3 (2332), respectively. The results reveal that in a warming climate, changes in extreme precipitation in terms of rain-total, rain-duration, and rain-distribution would result in the expansion of slope instability in the hilly region. This application is considered as a prevailing method for landslide susceptibility analysis and would provide important information for authorities in developing adequate land-management in the river basin.","PeriodicalId":70695,"journal":{"name":"现代水文学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evaluation of Landslide Susceptibility in Cau River Basin Using a Physical-Based Model under Impact of Climate Change\",\"authors\":\"T. Le, Seiki Kawagoe\",\"doi\":\"10.4236/OJMH.2019.91001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper evaluated the probability of landslide susceptibilities through the applica-tion of the Transient Rainfall Infiltration and Grid-Based Region Slope-Stability model in Cau river basin (Vietnam) using the scenarios-based approach under the influence of the warming climate. The tested cases were developed based on various options including rainfall amount and distribution, soil depth determination, and land-cover conditions. Input data for extreme rain events included historical rainstorm in 2013, the Probable Maximum Precipitation (PMP) with the durations of 24 hours and 48 hours. The results illustrated the reduction of slope stability when the land cover changed from land-use data in 2007 (Ha12) to land-use data in 2015 (Ha22). When the whole region was assumed to be replaced by soil (Ha02), the factor of safety (Fs) decreased to lower magnitude when compared to Fs value regarding to changes in land cover condition (Ha12 & Ha22) and changes in soil-depth (Ha33). The model simulations demonstrated the agreement with the slope-failure hazard association with the destabilizing factor such as slope-cutting activities at historical landslide events. Under the same land-cover and soil depth condition, the average value of factor of safety regarding to the historical rainstorm in 2013 (Ha32) declined by 0.069 and 0.189 when compared to Fs of the 24-hour PMP with the storm distribution type 3 (1332) and Fs of the 48-hour PMP with the storm distribution type 3 (2332), respectively. The results reveal that in a warming climate, changes in extreme precipitation in terms of rain-total, rain-duration, and rain-distribution would result in the expansion of slope instability in the hilly region. This application is considered as a prevailing method for landslide susceptibility analysis and would provide important information for authorities in developing adequate land-management in the river basin.\",\"PeriodicalId\":70695,\"journal\":{\"name\":\"现代水文学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"现代水文学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJMH.2019.91001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"现代水文学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJMH.2019.91001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文采用基于情景的方法,应用瞬态降雨入渗和网格区域边坡稳定性模型,对越南曹河流域在气候变暖影响下的滑坡易发概率进行了评估。测试案例是基于各种选项开发的,包括降雨量和分布、土壤深度确定和土地覆盖条件。极端降雨事件的输入数据包括2013年历史暴雨、24小时和48小时的可能最大降水(PMP)。结果表明,从2007年土地利用数据(Ha12)到2015年土地利用数据(Ha22),土地覆盖变化导致边坡稳定性降低。当假设整个区域被土壤(Ha02)替代时,与土地覆盖条件(Ha12和Ha22)和土壤深度(Ha33)变化的Fs值相比,安全系数(Fs)降低到更低的量级。模型模拟结果与历史滑坡事件中坡面破坏危险性与不稳定因素(如切坡活动)的关联一致。在相同土地覆盖和土壤深度条件下,2013年历史暴雨的安全系数平均值(Ha32)与风暴分布类型为3的24小时PMP的f值(1332)和风暴分布类型为3的48小时PMP的f值(2332)相比,分别下降了0.069和0.189。结果表明,在气候变暖的条件下,极端降水总量、雨时和雨分布的变化将导致丘陵区边坡失稳的扩大。这种应用被认为是滑坡易感性分析的一种普遍方法,并将为当局在河流流域制定适当的土地管理提供重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Landslide Susceptibility in Cau River Basin Using a Physical-Based Model under Impact of Climate Change
This paper evaluated the probability of landslide susceptibilities through the applica-tion of the Transient Rainfall Infiltration and Grid-Based Region Slope-Stability model in Cau river basin (Vietnam) using the scenarios-based approach under the influence of the warming climate. The tested cases were developed based on various options including rainfall amount and distribution, soil depth determination, and land-cover conditions. Input data for extreme rain events included historical rainstorm in 2013, the Probable Maximum Precipitation (PMP) with the durations of 24 hours and 48 hours. The results illustrated the reduction of slope stability when the land cover changed from land-use data in 2007 (Ha12) to land-use data in 2015 (Ha22). When the whole region was assumed to be replaced by soil (Ha02), the factor of safety (Fs) decreased to lower magnitude when compared to Fs value regarding to changes in land cover condition (Ha12 & Ha22) and changes in soil-depth (Ha33). The model simulations demonstrated the agreement with the slope-failure hazard association with the destabilizing factor such as slope-cutting activities at historical landslide events. Under the same land-cover and soil depth condition, the average value of factor of safety regarding to the historical rainstorm in 2013 (Ha32) declined by 0.069 and 0.189 when compared to Fs of the 24-hour PMP with the storm distribution type 3 (1332) and Fs of the 48-hour PMP with the storm distribution type 3 (2332), respectively. The results reveal that in a warming climate, changes in extreme precipitation in terms of rain-total, rain-duration, and rain-distribution would result in the expansion of slope instability in the hilly region. This application is considered as a prevailing method for landslide susceptibility analysis and would provide important information for authorities in developing adequate land-management in the river basin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
84
期刊最新文献
Adequacy of Water Use Resources for Drinking and Irrigation, Study Case of Sarh City, Capital of Moyen-Chari Province, CHAD Analysis on Residents’ Satisfaction and Its Influencing Factors with Water Environment Management: Based on the Data from Xiaoqing River Utility Impact below Bridge or Culvert Soffit on Open Channel Flow A Framework to Regionalize Flow Information in a Catchment with Limited Hydrological Data A Novel Approach for Optimum Conjunctive Use Management of Groundwater and Surface Water Resources under Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1