B. Escribano, Medina Fern, ez Fj, J. CaballeroVillarraso, M. Feijóo, E. Agüera, I. Túnez
{"title":"经颅磁刺激在精神疾病中的作用和治疗应用:一项基于证据的综述","authors":"B. Escribano, Medina Fern, ez Fj, J. CaballeroVillarraso, M. Feijóo, E. Agüera, I. Túnez","doi":"10.4172/NEUROPSYCHIATRY.1000560","DOIUrl":null,"url":null,"abstract":"Objective Recently we found that chronic immobilization stress (CIS) induced low levels of glutamate (Glu) and glutamine (Gln) and hypoactive glutamatergic signaling in the mouse prefrontal cortex (PFC), which was closely related with Glu-Gln cycle. Moreover, Gln-supplemented diet ameliorated CISinduced deleterious changes. In the present study, therefore, we investigated the effects of CIS and Gln supplementation on Glu-Gln cycle-related proteins to understand underlying mechanisms. Methods Using CIS-induced depression mouse model, we confirmed depressive behaviors caused by CIS and antidepressant property of Gln-supplementation with behavioral test and blood corticosterone assay. We examined expression of eleven proteins involving Glu-Gln cycle in the PFC. Results CIS decreased glutamate transporter 1 (GLT1), sodium-coupled neutral amino acid transporter (SNAT) 3, SNAT5, and mature SNAT2, suggesting excitotoxicity in synaptic cleft and shortage of Glu and Gln in astrocytes and neurons. Gln-supplementation did not affect non-stressed group, but significantly increased SNAT1 and SNAT3, which are the major Gln transporter in neurons and astrocytes respectively, as well as the mature SNAT2, implicating increasing transportation of Gln into neurons. Conclusion As a result, we confirmed that CIS disturbed Glu-Gln cycle toward shortage of Glu and Gln levels in astrocytes and neurons, but Gln supplementation changed Glu-Gln cycle toward facilitating translocation of Gln into neurons for glutamatergic signaling. Moreover, these results also supported the antidepressant property of Gln.","PeriodicalId":49013,"journal":{"name":"Neuropsychiatry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects and Therapeutic Use of TMS in Psychiatric Disorders: An Evidence-Based Review\",\"authors\":\"B. Escribano, Medina Fern, ez Fj, J. CaballeroVillarraso, M. Feijóo, E. Agüera, I. Túnez\",\"doi\":\"10.4172/NEUROPSYCHIATRY.1000560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective Recently we found that chronic immobilization stress (CIS) induced low levels of glutamate (Glu) and glutamine (Gln) and hypoactive glutamatergic signaling in the mouse prefrontal cortex (PFC), which was closely related with Glu-Gln cycle. Moreover, Gln-supplemented diet ameliorated CISinduced deleterious changes. In the present study, therefore, we investigated the effects of CIS and Gln supplementation on Glu-Gln cycle-related proteins to understand underlying mechanisms. Methods Using CIS-induced depression mouse model, we confirmed depressive behaviors caused by CIS and antidepressant property of Gln-supplementation with behavioral test and blood corticosterone assay. We examined expression of eleven proteins involving Glu-Gln cycle in the PFC. Results CIS decreased glutamate transporter 1 (GLT1), sodium-coupled neutral amino acid transporter (SNAT) 3, SNAT5, and mature SNAT2, suggesting excitotoxicity in synaptic cleft and shortage of Glu and Gln in astrocytes and neurons. Gln-supplementation did not affect non-stressed group, but significantly increased SNAT1 and SNAT3, which are the major Gln transporter in neurons and astrocytes respectively, as well as the mature SNAT2, implicating increasing transportation of Gln into neurons. Conclusion As a result, we confirmed that CIS disturbed Glu-Gln cycle toward shortage of Glu and Gln levels in astrocytes and neurons, but Gln supplementation changed Glu-Gln cycle toward facilitating translocation of Gln into neurons for glutamatergic signaling. Moreover, these results also supported the antidepressant property of Gln.\",\"PeriodicalId\":49013,\"journal\":{\"name\":\"Neuropsychiatry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/NEUROPSYCHIATRY.1000560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/NEUROPSYCHIATRY.1000560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects and Therapeutic Use of TMS in Psychiatric Disorders: An Evidence-Based Review
Objective Recently we found that chronic immobilization stress (CIS) induced low levels of glutamate (Glu) and glutamine (Gln) and hypoactive glutamatergic signaling in the mouse prefrontal cortex (PFC), which was closely related with Glu-Gln cycle. Moreover, Gln-supplemented diet ameliorated CISinduced deleterious changes. In the present study, therefore, we investigated the effects of CIS and Gln supplementation on Glu-Gln cycle-related proteins to understand underlying mechanisms. Methods Using CIS-induced depression mouse model, we confirmed depressive behaviors caused by CIS and antidepressant property of Gln-supplementation with behavioral test and blood corticosterone assay. We examined expression of eleven proteins involving Glu-Gln cycle in the PFC. Results CIS decreased glutamate transporter 1 (GLT1), sodium-coupled neutral amino acid transporter (SNAT) 3, SNAT5, and mature SNAT2, suggesting excitotoxicity in synaptic cleft and shortage of Glu and Gln in astrocytes and neurons. Gln-supplementation did not affect non-stressed group, but significantly increased SNAT1 and SNAT3, which are the major Gln transporter in neurons and astrocytes respectively, as well as the mature SNAT2, implicating increasing transportation of Gln into neurons. Conclusion As a result, we confirmed that CIS disturbed Glu-Gln cycle toward shortage of Glu and Gln levels in astrocytes and neurons, but Gln supplementation changed Glu-Gln cycle toward facilitating translocation of Gln into neurons for glutamatergic signaling. Moreover, these results also supported the antidepressant property of Gln.
期刊介绍:
Neuropsychiatry is a bimonthly, peer reviewed, open access Journal aimed at exploring the latest breakthroughs in brain and behavior in order to enhance our current understanding of the disturbances in brain function. The Journal has established itself among the most authoritative journals in the field by publishing cutting-edge research in neuropsychiatry and also serves as a forum for discussing the latest advancements and problem statements in the field.