使用结构化训练实例和分类器集合对非结构化文本进行分类

A. Lianos, Yanyan Yang
{"title":"使用结构化训练实例和分类器集合对非结构化文本进行分类","authors":"A. Lianos, Yanyan Yang","doi":"10.4236/JILSA.2015.72006","DOIUrl":null,"url":null,"abstract":"Typical supervised classification techniques require training instances similar to the values that need to be classified. This research proposes a methodology that can utilize training instances found in a different format. The benefit of this approach is that it allows the use of traditional classification techniques, without the need to hand-tag training instances if the information exists in other data sources. The proposed approach is presented through a practical classification application. The evaluation results show that the approach is viable, and that the segmentation of classifiers can greatly improve accuracy.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"07 1","pages":"58-73"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classifying Unstructured Text Using Structured Training Instances and an Ensemble of Classifiers\",\"authors\":\"A. Lianos, Yanyan Yang\",\"doi\":\"10.4236/JILSA.2015.72006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical supervised classification techniques require training instances similar to the values that need to be classified. This research proposes a methodology that can utilize training instances found in a different format. The benefit of this approach is that it allows the use of traditional classification techniques, without the need to hand-tag training instances if the information exists in other data sources. The proposed approach is presented through a practical classification application. The evaluation results show that the approach is viable, and that the segmentation of classifiers can greatly improve accuracy.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":\"07 1\",\"pages\":\"58-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2015.72006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2015.72006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

典型的监督分类技术需要与需要分类的值相似的训练实例。本研究提出了一种方法,可以利用以不同格式找到的训练实例。这种方法的好处是,它允许使用传统的分类技术,如果信息存在于其他数据源中,则不需要手动标记训练实例。通过一个实际的分类应用,提出了该方法。评价结果表明,该方法是可行的,分类器的分割精度大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying Unstructured Text Using Structured Training Instances and an Ensemble of Classifiers
Typical supervised classification techniques require training instances similar to the values that need to be classified. This research proposes a methodology that can utilize training instances found in a different format. The benefit of this approach is that it allows the use of traditional classification techniques, without the need to hand-tag training instances if the information exists in other data sources. The proposed approach is presented through a practical classification application. The evaluation results show that the approach is viable, and that the segmentation of classifiers can greatly improve accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
135
期刊最新文献
Architecting the Metaverse: Blockchain and the Financial and Legal Regulatory Challenges of Virtual Real Estate A Proposed Meta-Reality Immersive Development Pipeline: Generative AI Models and Extended Reality (XR) Content for the Metaverse A Comparison of PPO, TD3 and SAC Reinforcement Algorithms for Quadruped Walking Gait Generation Multiple Collaborative Service Model and System Construction Based on Industrial Competitive Intelligence Skin Cancer Classification Using Transfer Learning by VGG16 Architecture (Case Study on Kaggle Dataset)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1