数据均衡的KNN欠采样方法

M. Beckmann, N. Ebecken, B. D. Lima
{"title":"数据均衡的KNN欠采样方法","authors":"M. Beckmann, N. Ebecken, B. D. Lima","doi":"10.4236/JILSA.2015.74010","DOIUrl":null,"url":null,"abstract":"In supervised learning, the imbalanced number of instances among the classes in a dataset can make the algorithms to classify one instance from the minority class as one from the majority class. With the aim to solve this problem, the KNN algorithm provides a basis to other balancing methods. These balancing methods are revisited in this work, and a new and simple approach of KNN undersampling is proposed. The experiments demonstrated that the KNN undersampling method outperformed other sampling methods. The proposed method also outperformed the results of other studies, and indicates that the simplicity of KNN can be used as a base for efficient algorithms in machine learning and knowledge discovery.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"7 1","pages":"104-116"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"A KNN Undersampling Approach for Data Balancing\",\"authors\":\"M. Beckmann, N. Ebecken, B. D. Lima\",\"doi\":\"10.4236/JILSA.2015.74010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In supervised learning, the imbalanced number of instances among the classes in a dataset can make the algorithms to classify one instance from the minority class as one from the majority class. With the aim to solve this problem, the KNN algorithm provides a basis to other balancing methods. These balancing methods are revisited in this work, and a new and simple approach of KNN undersampling is proposed. The experiments demonstrated that the KNN undersampling method outperformed other sampling methods. The proposed method also outperformed the results of other studies, and indicates that the simplicity of KNN can be used as a base for efficient algorithms in machine learning and knowledge discovery.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":\"7 1\",\"pages\":\"104-116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2015.74010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2015.74010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

在监督学习中,数据集中的类之间的实例数量不平衡会使算法将少数类中的一个实例分类为多数类中的一个实例。为了解决这一问题,KNN算法为其他平衡方法提供了基础。本文对这些平衡方法进行了回顾,提出了一种新的简单的KNN欠采样方法。实验表明,KNN欠采样方法优于其他采样方法。该方法也优于其他研究的结果,表明KNN的简单性可以作为机器学习和知识发现的有效算法的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A KNN Undersampling Approach for Data Balancing
In supervised learning, the imbalanced number of instances among the classes in a dataset can make the algorithms to classify one instance from the minority class as one from the majority class. With the aim to solve this problem, the KNN algorithm provides a basis to other balancing methods. These balancing methods are revisited in this work, and a new and simple approach of KNN undersampling is proposed. The experiments demonstrated that the KNN undersampling method outperformed other sampling methods. The proposed method also outperformed the results of other studies, and indicates that the simplicity of KNN can be used as a base for efficient algorithms in machine learning and knowledge discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
135
期刊最新文献
Architecting the Metaverse: Blockchain and the Financial and Legal Regulatory Challenges of Virtual Real Estate A Proposed Meta-Reality Immersive Development Pipeline: Generative AI Models and Extended Reality (XR) Content for the Metaverse A Comparison of PPO, TD3 and SAC Reinforcement Algorithms for Quadruped Walking Gait Generation Multiple Collaborative Service Model and System Construction Based on Industrial Competitive Intelligence Skin Cancer Classification Using Transfer Learning by VGG16 Architecture (Case Study on Kaggle Dataset)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1