Web代理缓存替换中的智能动态老化方法

Waleed Ali, S. Shamsuddin
{"title":"Web代理缓存替换中的智能动态老化方法","authors":"Waleed Ali, S. Shamsuddin","doi":"10.4236/JILSA.2015.74011","DOIUrl":null,"url":null,"abstract":"One of commonly used approach to enhance \nthe Web performance is Web proxy caching technique. In Web proxy caching, \nLeast-Frequently-Used-Dynamic-Aging (LFU-DA) is one of the common proxy cache \nreplacement methods, which is widely used in Web proxy cache management. LFU-DA \naccomplishes a superior byte hit ratio compared to other Web proxy cache \nreplacement algorithms. However, LFU-DA may suffer in hit ratio measure. \nTherefore, in this paper, LFU-DA is enhanced using popular supervised machine \nlearning techniques such as a support vector machine (SVM), a naive Bayes \nclassifier (NB) and a decision tree (C4.5). SVM, NB and C4.5 are trained from \nWeb proxy logs files and then intelligently incorporated with LFU-DA to form \nIntelligent Dynamic- Aging (DA) approaches. The simulation results revealed \nthat the proposed intelligent Dynamic- Aging approaches considerably improved \nthe performances in terms of hit and byte hit ratio of the conventional LFU-DA \non a range of real datasets.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Intelligent Dynamic Aging Approaches in Web Proxy Cache Replacement\",\"authors\":\"Waleed Ali, S. Shamsuddin\",\"doi\":\"10.4236/JILSA.2015.74011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of commonly used approach to enhance \\nthe Web performance is Web proxy caching technique. In Web proxy caching, \\nLeast-Frequently-Used-Dynamic-Aging (LFU-DA) is one of the common proxy cache \\nreplacement methods, which is widely used in Web proxy cache management. LFU-DA \\naccomplishes a superior byte hit ratio compared to other Web proxy cache \\nreplacement algorithms. However, LFU-DA may suffer in hit ratio measure. \\nTherefore, in this paper, LFU-DA is enhanced using popular supervised machine \\nlearning techniques such as a support vector machine (SVM), a naive Bayes \\nclassifier (NB) and a decision tree (C4.5). SVM, NB and C4.5 are trained from \\nWeb proxy logs files and then intelligently incorporated with LFU-DA to form \\nIntelligent Dynamic- Aging (DA) approaches. The simulation results revealed \\nthat the proposed intelligent Dynamic- Aging approaches considerably improved \\nthe performances in terms of hit and byte hit ratio of the conventional LFU-DA \\non a range of real datasets.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2015.74011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2015.74011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提高Web性能的常用方法之一是Web代理缓存技术。在Web代理缓存中,LFU-DA (least - frequency - used - dynamic - aging)是一种常用的代理缓存替换方法,广泛应用于Web代理缓存管理中。与其他Web代理缓存替换算法相比,LFU-DA实现了更高的字节命中率。然而,LFU-DA在命中率测量方面可能会受到影响。因此,在本文中,使用流行的监督机器学习技术(如支持向量机(SVM),朴素贝叶斯分类器(NB)和决策树(C4.5)来增强LFU-DA。SVM、NB和C4.5从Web代理日志文件中进行训练,然后与LFU-DA智能结合,形成智能动态老化(Intelligent Dynamic- Aging, DA)方法。仿真结果表明,所提出的智能动态老化方法在命中率和字节命中率方面显著提高了传统LFU-DA在一系列真实数据集上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Dynamic Aging Approaches in Web Proxy Cache Replacement
One of commonly used approach to enhance the Web performance is Web proxy caching technique. In Web proxy caching, Least-Frequently-Used-Dynamic-Aging (LFU-DA) is one of the common proxy cache replacement methods, which is widely used in Web proxy cache management. LFU-DA accomplishes a superior byte hit ratio compared to other Web proxy cache replacement algorithms. However, LFU-DA may suffer in hit ratio measure. Therefore, in this paper, LFU-DA is enhanced using popular supervised machine learning techniques such as a support vector machine (SVM), a naive Bayes classifier (NB) and a decision tree (C4.5). SVM, NB and C4.5 are trained from Web proxy logs files and then intelligently incorporated with LFU-DA to form Intelligent Dynamic- Aging (DA) approaches. The simulation results revealed that the proposed intelligent Dynamic- Aging approaches considerably improved the performances in terms of hit and byte hit ratio of the conventional LFU-DA on a range of real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
135
期刊最新文献
Architecting the Metaverse: Blockchain and the Financial and Legal Regulatory Challenges of Virtual Real Estate A Proposed Meta-Reality Immersive Development Pipeline: Generative AI Models and Extended Reality (XR) Content for the Metaverse A Comparison of PPO, TD3 and SAC Reinforcement Algorithms for Quadruped Walking Gait Generation Multiple Collaborative Service Model and System Construction Based on Industrial Competitive Intelligence Skin Cancer Classification Using Transfer Learning by VGG16 Architecture (Case Study on Kaggle Dataset)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1