基于模糊推理脉冲神经P系统的电力变压器故障诊断

Y. Yahya, Ai Qian, Adel Yahya
{"title":"基于模糊推理脉冲神经P系统的电力变压器故障诊断","authors":"Y. Yahya, Ai Qian, Adel Yahya","doi":"10.4236/JILSA.2016.84007","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"08 1","pages":"77-91"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Power Transformer Fault Diagnosis Using Fuzzy Reasoning Spiking Neural P Systems\",\"authors\":\"Y. Yahya, Ai Qian, Adel Yahya\",\"doi\":\"10.4236/JILSA.2016.84007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.\",\"PeriodicalId\":69452,\"journal\":{\"name\":\"智能学习系统与应用(英文)\",\"volume\":\"08 1\",\"pages\":\"77-91\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能学习系统与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JILSA.2016.84007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JILSA.2016.84007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种电力变压器溶解与游离气体分析(DGA)智能故障诊断技术。模糊推理脉冲神经P系统(FRSN P系统)作为一种膜计算分布式并行计算模型,是一种功能强大、适用于模糊诊断知识的图形化方法模型。从某种意义上说,这一特征是在学习阶段建立电力变压器故障识别和隐式捕获知识所必需的,使用语言变量、每个气体特征的“低”、“中”和“高”描述的隶属函数以及推理规则库。利用隶属函数将判断转化为模糊数的数值表达。分析了四气比(IEC 60599)信号作为FRSN - P系统输入数据的性能方法。用例结果表明,本文提出的电力变压器故障诊断方法能显著提高电力变压器故障诊断的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Transformer Fault Diagnosis Using Fuzzy Reasoning Spiking Neural P Systems
This paper presents an intelligent technique to fault diagnosis of power transformers dissolved and free gas analysis (DGA). Fuzzy Reasoning Spiking neural P systems (FRSN P systems) as a membrane computing with distributed parallel computing model is powerful and suitable graphical approach model in fuzzy diagnosis knowledge. In a sense this feature is required for establishing the power transformers faults identifications and capturing knowledge implicitly during the learning stage, using linguistic variables, membership functions with “low”, “medium”, and “high” descriptions for each gas signature, and inference rule base. Membership functions are used to translate judgments into numerical expression by fuzzy numbers. The performance method is analyzed in terms for four gas ratio (IEC 60599) signature as input data of FRSN P systems. Test case results evaluate that the proposals method for power transformer fault diagnosis can significantly improve the diagnosis accuracy power transformer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
135
期刊最新文献
Architecting the Metaverse: Blockchain and the Financial and Legal Regulatory Challenges of Virtual Real Estate A Proposed Meta-Reality Immersive Development Pipeline: Generative AI Models and Extended Reality (XR) Content for the Metaverse A Comparison of PPO, TD3 and SAC Reinforcement Algorithms for Quadruped Walking Gait Generation Multiple Collaborative Service Model and System Construction Based on Industrial Competitive Intelligence Skin Cancer Classification Using Transfer Learning by VGG16 Architecture (Case Study on Kaggle Dataset)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1