用AES实现的复杂加密系统设计

Zhimao Lu, H. Mohamed
{"title":"用AES实现的复杂加密系统设计","authors":"Zhimao Lu, H. Mohamed","doi":"10.4236/JIS.2021.122009","DOIUrl":null,"url":null,"abstract":"With the rapid development of internet technology and the increasing popularity of e-commerce, data encryption technology plays a very important role in data security. Information security has two aspects: security protocol and cryptographic algorithm and the latter is the foundation and core technology of information security. Advanced Encryption Standard (AES) encryption algorithm is one of the most commonly used algorithms in symmetric encryption algorithms. Such algorithms face issues when used in the context of key management and security functions. This paper focuses on the systematic analysis of these issues and summarizes AES algorithm implementation, comprehensive application and algorithm comparison with other existing methods. To analyze the performance of the proposed algorithm and to make full use of the advantages of AES encryption algorithm, one needs to reduce round key and improve the key schedule, as well as organically integrate with RSA algorithm. Java language is used to implement the algorithm due to its large library, then to show the efficiency of the proposed method we compare different parameters, such as encryption/decryption speed, entropies and memory consumption...) with a classic algorithm. Based on the results of the comparison between AES and the hybrid AES algorithm, the proposed algorithm shows good performance and high security. It therefore can be used for key management and security functions, particularly for sharing sensitive files through insecure channel. This analysis provides a reference useful for selecting different encryption algorithms according to different business needs.","PeriodicalId":57259,"journal":{"name":"信息安全(英文)","volume":"12 1","pages":"177-187"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Complex Encryption System Design Implemented by AES\",\"authors\":\"Zhimao Lu, H. Mohamed\",\"doi\":\"10.4236/JIS.2021.122009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of internet technology and the increasing popularity of e-commerce, data encryption technology plays a very important role in data security. Information security has two aspects: security protocol and cryptographic algorithm and the latter is the foundation and core technology of information security. Advanced Encryption Standard (AES) encryption algorithm is one of the most commonly used algorithms in symmetric encryption algorithms. Such algorithms face issues when used in the context of key management and security functions. This paper focuses on the systematic analysis of these issues and summarizes AES algorithm implementation, comprehensive application and algorithm comparison with other existing methods. To analyze the performance of the proposed algorithm and to make full use of the advantages of AES encryption algorithm, one needs to reduce round key and improve the key schedule, as well as organically integrate with RSA algorithm. Java language is used to implement the algorithm due to its large library, then to show the efficiency of the proposed method we compare different parameters, such as encryption/decryption speed, entropies and memory consumption...) with a classic algorithm. Based on the results of the comparison between AES and the hybrid AES algorithm, the proposed algorithm shows good performance and high security. It therefore can be used for key management and security functions, particularly for sharing sensitive files through insecure channel. This analysis provides a reference useful for selecting different encryption algorithms according to different business needs.\",\"PeriodicalId\":57259,\"journal\":{\"name\":\"信息安全(英文)\",\"volume\":\"12 1\",\"pages\":\"177-187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息安全(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/JIS.2021.122009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息安全(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JIS.2021.122009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着互联网技术的飞速发展和电子商务的日益普及,数据加密技术在数据安全中起着非常重要的作用。信息安全包括安全协议和加密算法两个方面,加密算法是信息安全的基础和核心技术。高级加密标准AES (Advanced Encryption Standard)加密算法是对称加密算法中最常用的算法之一。这种算法在用于密钥管理和安全功能时面临问题。本文着重对这些问题进行了系统的分析,总结了AES算法的实现、综合应用以及与其他现有方法的算法比较。为了分析所提出算法的性能,充分利用AES加密算法的优点,需要减少轮密钥和改进密钥调度,并与RSA算法有机集成。由于Java语言的库较大,采用Java语言实现该算法,并将其与经典算法的加解密速度、熵和内存消耗等参数进行了比较,以证明该算法的有效性。将AES算法与混合AES算法进行了比较,结果表明该算法具有良好的性能和较高的安全性。因此,它可以用于密钥管理和安全功能,特别是通过不安全的通道共享敏感文件。该分析为根据不同的业务需求选择不同的加密算法提供了有用的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Complex Encryption System Design Implemented by AES
With the rapid development of internet technology and the increasing popularity of e-commerce, data encryption technology plays a very important role in data security. Information security has two aspects: security protocol and cryptographic algorithm and the latter is the foundation and core technology of information security. Advanced Encryption Standard (AES) encryption algorithm is one of the most commonly used algorithms in symmetric encryption algorithms. Such algorithms face issues when used in the context of key management and security functions. This paper focuses on the systematic analysis of these issues and summarizes AES algorithm implementation, comprehensive application and algorithm comparison with other existing methods. To analyze the performance of the proposed algorithm and to make full use of the advantages of AES encryption algorithm, one needs to reduce round key and improve the key schedule, as well as organically integrate with RSA algorithm. Java language is used to implement the algorithm due to its large library, then to show the efficiency of the proposed method we compare different parameters, such as encryption/decryption speed, entropies and memory consumption...) with a classic algorithm. Based on the results of the comparison between AES and the hybrid AES algorithm, the proposed algorithm shows good performance and high security. It therefore can be used for key management and security functions, particularly for sharing sensitive files through insecure channel. This analysis provides a reference useful for selecting different encryption algorithms according to different business needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
211
期刊最新文献
Secure Web Application Technologies Implementation through Hardening Security Headers Using Automated Threat Modelling Techniques Research and Practice on High Availability Scheme of Unified Identity Authentication System Based on CAS in Colleges and Universities Learning with Errors Public Key Cryptosystem with Its Security User Station Security Protection Method Based on Random Domain Name Detection and Active Defense Towards a New Model for the Production of Civil Status Records Using Blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1