氧化锌纳米颗粒在Eva中制备食品包装薄膜的应用

C. T. Oliveira, Jorge P. Chimanowsky Junior, M. Tavares
{"title":"氧化锌纳米颗粒在Eva中制备食品包装薄膜的应用","authors":"C. T. Oliveira, Jorge P. Chimanowsky Junior, M. Tavares","doi":"10.4236/anp.2020.93005","DOIUrl":null,"url":null,"abstract":"The increasing demand for new packages with increased shelf life properties has stimulated the increase of research in the active packaging sector. The use of antimicrobial agents requires an in-depth study of their properties to avoid loss of efficiency of the polymer processing. In this context, the objective of this work was to evaluate the preparation of an 18% ethylene vinyl acetate copolymer (EVA) nanocomposite and zinc oxide (ZnO) as microbicidal nanoparticle, prepared in a monosulfon extruder. The nanoparticle was modified with octadecylamine and EVA 18 nanocomposite films were prepared and compared to the systems containing modified nanoparticle. These new materials were characterized by thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA), Time Domain Nuclear Magnetic Resonance (NMR) to investigate the effect of zinc oxide nanoparticles on thermal properties, EVA crystallinity and antimicrobial effect. The TGA showed a tendency of increase of the thermal stability in different proportions of ZnO. DSC results did not show significant changes in thermal parameters. The XRD analysis showed an increase in the degree of crystallinity of the nanocomposites in relation to the EVA matrix and change in the crystallinity with the increase of ZnO percentages. DMA analysis indicates change in structural organization through the variation of storage modulus, loss, and tan delta. Time domain NMR data corroborate with XRD data through the change in molecular mobility.","PeriodicalId":71264,"journal":{"name":"纳米粒子(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Use of Zinc Oxide Nanoparticles in Eva to Obtain Food Packing Films\",\"authors\":\"C. T. Oliveira, Jorge P. Chimanowsky Junior, M. Tavares\",\"doi\":\"10.4236/anp.2020.93005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing demand for new packages with increased shelf life properties has stimulated the increase of research in the active packaging sector. The use of antimicrobial agents requires an in-depth study of their properties to avoid loss of efficiency of the polymer processing. In this context, the objective of this work was to evaluate the preparation of an 18% ethylene vinyl acetate copolymer (EVA) nanocomposite and zinc oxide (ZnO) as microbicidal nanoparticle, prepared in a monosulfon extruder. The nanoparticle was modified with octadecylamine and EVA 18 nanocomposite films were prepared and compared to the systems containing modified nanoparticle. These new materials were characterized by thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA), Time Domain Nuclear Magnetic Resonance (NMR) to investigate the effect of zinc oxide nanoparticles on thermal properties, EVA crystallinity and antimicrobial effect. The TGA showed a tendency of increase of the thermal stability in different proportions of ZnO. DSC results did not show significant changes in thermal parameters. The XRD analysis showed an increase in the degree of crystallinity of the nanocomposites in relation to the EVA matrix and change in the crystallinity with the increase of ZnO percentages. DMA analysis indicates change in structural organization through the variation of storage modulus, loss, and tan delta. Time domain NMR data corroborate with XRD data through the change in molecular mobility.\",\"PeriodicalId\":71264,\"journal\":{\"name\":\"纳米粒子(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"纳米粒子(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/anp.2020.93005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"纳米粒子(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/anp.2020.93005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对具有延长保质期特性的新包装的需求不断增加,刺激了活性包装部门研究的增加。抗菌剂的使用需要深入研究其性能,以避免聚合物加工效率的损失。在此背景下,本研究的目的是评价在单砜挤出机中制备18%乙烯醋酸乙烯共聚物(EVA)纳米复合材料和氧化锌(ZnO)作为杀微生物纳米颗粒的制备方法。用十八胺修饰纳米粒子,制备了EVA 18纳米复合膜,并与改性纳米粒子的体系进行了比较。采用热重分析(TGA)、差示扫描量热分析(DSC)、x射线衍射(XRD)、动态力学分析(DMA)、时域核磁共振(NMR)等方法对这些新材料进行表征,研究氧化锌纳米颗粒对热性能、EVA结晶度和抗菌效果的影响。热重分析结果表明,不同比例的氧化锌对材料的热稳定性有提高的趋势。DSC结果显示热参数没有明显变化。XRD分析表明,纳米复合材料的结晶度相对于EVA基体有所增加,结晶度随ZnO含量的增加而变化。DMA分析通过存储模量、损耗和tan δ的变化表明结构组织的变化。时域NMR数据通过分子迁移率的变化与XRD数据相印证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of Zinc Oxide Nanoparticles in Eva to Obtain Food Packing Films
The increasing demand for new packages with increased shelf life properties has stimulated the increase of research in the active packaging sector. The use of antimicrobial agents requires an in-depth study of their properties to avoid loss of efficiency of the polymer processing. In this context, the objective of this work was to evaluate the preparation of an 18% ethylene vinyl acetate copolymer (EVA) nanocomposite and zinc oxide (ZnO) as microbicidal nanoparticle, prepared in a monosulfon extruder. The nanoparticle was modified with octadecylamine and EVA 18 nanocomposite films were prepared and compared to the systems containing modified nanoparticle. These new materials were characterized by thermogravimetric analysis (TGA), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), Dynamic Mechanical Analysis (DMA), Time Domain Nuclear Magnetic Resonance (NMR) to investigate the effect of zinc oxide nanoparticles on thermal properties, EVA crystallinity and antimicrobial effect. The TGA showed a tendency of increase of the thermal stability in different proportions of ZnO. DSC results did not show significant changes in thermal parameters. The XRD analysis showed an increase in the degree of crystallinity of the nanocomposites in relation to the EVA matrix and change in the crystallinity with the increase of ZnO percentages. DMA analysis indicates change in structural organization through the variation of storage modulus, loss, and tan delta. Time domain NMR data corroborate with XRD data through the change in molecular mobility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
106
期刊最新文献
Performance of Rhodamine-Sensitized Solar Cells Fabricated with Silver Nanoparticles Experimental Study of Effluent Salty Wastewater Treatment from a Solar Desalination Pond Green Synthesis and Antibacterial Properties of Silver Nanoparticles from Eugenia uniflora Fruit Extract Improved Catalytic Reaction of Biotemplated Palladium Nanoparticles through Immobilized Metal Affinity Purification Synthesis, Characterization, and Effects of Morphology on the Magnetic Application Base Properties of Pure Nickel Oxide (NiO) and Cobalt-Doped Nickel Oxide/Nickel Hydroxide (CoxNi1-xO/Ni(OH)2) Nanocomposites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1