C. Kaas, Yuzhou Fan, D. Weilguny, C. Kristensen, H. F. Kildegaard, M. Andersen
{"title":"中国仓鼠卵巢细胞基因组尺度模型的建立:动机、现状和展望","authors":"C. Kaas, Yuzhou Fan, D. Weilguny, C. Kristensen, H. F. Kildegaard, M. Andersen","doi":"10.4155/PBP.14.54","DOIUrl":null,"url":null,"abstract":"Bioprocessing of the important Chinese hamster ovary (CHO) cell lines used for the production of biopharmaceuticals stands at the brink of several redefining events. In 2011, the field entered the genomics era, which has accelerated omics-based phenotyping of the cell lines. In this review we describe one possible application of this data: the generation of computational models for predictive and descriptive analysis of CHO cellular metabolism. We describe relevant advances in other organisms and how they can be applied to CHO cells. The immediate implications of the implementation of these methods will be accelerated development of the next generation of CHO cell lines and derived biopharmaceuticals.","PeriodicalId":90285,"journal":{"name":"Pharmaceutical bioprocessing","volume":"2 1","pages":"437-448"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4155/PBP.14.54","citationCount":"14","resultStr":"{\"title\":\"Toward genome-scale models of the Chinese hamster ovary cells: incentives, status and perspectives\",\"authors\":\"C. Kaas, Yuzhou Fan, D. Weilguny, C. Kristensen, H. F. Kildegaard, M. Andersen\",\"doi\":\"10.4155/PBP.14.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bioprocessing of the important Chinese hamster ovary (CHO) cell lines used for the production of biopharmaceuticals stands at the brink of several redefining events. In 2011, the field entered the genomics era, which has accelerated omics-based phenotyping of the cell lines. In this review we describe one possible application of this data: the generation of computational models for predictive and descriptive analysis of CHO cellular metabolism. We describe relevant advances in other organisms and how they can be applied to CHO cells. The immediate implications of the implementation of these methods will be accelerated development of the next generation of CHO cell lines and derived biopharmaceuticals.\",\"PeriodicalId\":90285,\"journal\":{\"name\":\"Pharmaceutical bioprocessing\",\"volume\":\"2 1\",\"pages\":\"437-448\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4155/PBP.14.54\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical bioprocessing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4155/PBP.14.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical bioprocessing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/PBP.14.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward genome-scale models of the Chinese hamster ovary cells: incentives, status and perspectives
Bioprocessing of the important Chinese hamster ovary (CHO) cell lines used for the production of biopharmaceuticals stands at the brink of several redefining events. In 2011, the field entered the genomics era, which has accelerated omics-based phenotyping of the cell lines. In this review we describe one possible application of this data: the generation of computational models for predictive and descriptive analysis of CHO cellular metabolism. We describe relevant advances in other organisms and how they can be applied to CHO cells. The immediate implications of the implementation of these methods will be accelerated development of the next generation of CHO cell lines and derived biopharmaceuticals.