Monika Gupta, K. Prabhu, M. Ramesh, Vatsala Venketsh
{"title":"绝经后妇女颈强度与股骨上部几何形状和骨密度的关系","authors":"Monika Gupta, K. Prabhu, M. Ramesh, Vatsala Venketsh","doi":"10.4103/2319-2585.193843","DOIUrl":null,"url":null,"abstract":"Background: Hip fracture is a severe health burden in the elderly population. In order to prevent, it is to evaluate the bone strength by establishing the relation between bone mineral density (BMD), neck strength, and geometry. Materials and Methods: The subjects under study were 100 postmenopausal women who visited bone clinic of Bharat Scan Centre. After recording general profile such as age, body mass index (BMI), geometric measures such as hip axis length (HAL), neck shaft angle (NSA), and neck width (NW) were measured from digital X-ray. For the same individuals, BMD was measured using dual energy X-ray absorptiometry (DXA) scan. From the DXA print out neck strength was calculated using the formula = sectional modulus/HAL. Results: The correlation test was analyzed among BMD, neck strength, anthropometric, and geometric factors using Statistical packages for social services (SPSS) software. BMD is inversely related with age and positively correlated with height, weight, and BMI. HAL, NSA, and NW had a weaker association with BMD. Age, BMD, and NSA had a negative relation with neck strength. HAL and NW had a positive relation with neck strength. Conclusion: Noninvasive means of associating neck strength with BMD and geometry will provide improved estimates for fracture risk beyond any other invasive method of assessing bone mineral properties.","PeriodicalId":31882,"journal":{"name":"Journal of Orthopaedics and Allied Sciences","volume":"4 1","pages":"65 - 68"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Association of neck strength with upper femoral geometry and bone mineral density in postmenopausal women\",\"authors\":\"Monika Gupta, K. Prabhu, M. Ramesh, Vatsala Venketsh\",\"doi\":\"10.4103/2319-2585.193843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Hip fracture is a severe health burden in the elderly population. In order to prevent, it is to evaluate the bone strength by establishing the relation between bone mineral density (BMD), neck strength, and geometry. Materials and Methods: The subjects under study were 100 postmenopausal women who visited bone clinic of Bharat Scan Centre. After recording general profile such as age, body mass index (BMI), geometric measures such as hip axis length (HAL), neck shaft angle (NSA), and neck width (NW) were measured from digital X-ray. For the same individuals, BMD was measured using dual energy X-ray absorptiometry (DXA) scan. From the DXA print out neck strength was calculated using the formula = sectional modulus/HAL. Results: The correlation test was analyzed among BMD, neck strength, anthropometric, and geometric factors using Statistical packages for social services (SPSS) software. BMD is inversely related with age and positively correlated with height, weight, and BMI. HAL, NSA, and NW had a weaker association with BMD. Age, BMD, and NSA had a negative relation with neck strength. HAL and NW had a positive relation with neck strength. Conclusion: Noninvasive means of associating neck strength with BMD and geometry will provide improved estimates for fracture risk beyond any other invasive method of assessing bone mineral properties.\",\"PeriodicalId\":31882,\"journal\":{\"name\":\"Journal of Orthopaedics and Allied Sciences\",\"volume\":\"4 1\",\"pages\":\"65 - 68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Orthopaedics and Allied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2319-2585.193843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedics and Allied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2319-2585.193843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Association of neck strength with upper femoral geometry and bone mineral density in postmenopausal women
Background: Hip fracture is a severe health burden in the elderly population. In order to prevent, it is to evaluate the bone strength by establishing the relation between bone mineral density (BMD), neck strength, and geometry. Materials and Methods: The subjects under study were 100 postmenopausal women who visited bone clinic of Bharat Scan Centre. After recording general profile such as age, body mass index (BMI), geometric measures such as hip axis length (HAL), neck shaft angle (NSA), and neck width (NW) were measured from digital X-ray. For the same individuals, BMD was measured using dual energy X-ray absorptiometry (DXA) scan. From the DXA print out neck strength was calculated using the formula = sectional modulus/HAL. Results: The correlation test was analyzed among BMD, neck strength, anthropometric, and geometric factors using Statistical packages for social services (SPSS) software. BMD is inversely related with age and positively correlated with height, weight, and BMI. HAL, NSA, and NW had a weaker association with BMD. Age, BMD, and NSA had a negative relation with neck strength. HAL and NW had a positive relation with neck strength. Conclusion: Noninvasive means of associating neck strength with BMD and geometry will provide improved estimates for fracture risk beyond any other invasive method of assessing bone mineral properties.