北极第四纪海洋冰暴事件:来自Rabilimis介形虫的证据

IF 1.3 4区 地球科学 Q3 PALEONTOLOGY Micropaleontology Pub Date : 2022-01-01 DOI:10.47894/mpal.68.3.03
T. Cronin, L. Gemery, Baylee M. Olds, A. M. Regnier, R. Poirier, Sienna Sui
{"title":"北极第四纪海洋冰暴事件:来自Rabilimis介形虫的证据","authors":"T. Cronin, L. Gemery, Baylee M. Olds, A. M. Regnier, R. Poirier, Sienna Sui","doi":"10.47894/mpal.68.3.03","DOIUrl":null,"url":null,"abstract":"The Arctic Ocean has experienced orbital and millennial-scale climate oscillations over the last 500 kilo-annum (ka) involving massive changes in global sea level and components of the Arctic cryosphere, including sea-ice cover, land-based ice sheets and ice shelves. Although these climate events are only partially understood, micropaleontological studies utilizing ostracodes and benthic foraminifera have demonstrated that major changes in faunas have occurred at different timescales that signify ecosystem regime changes linked to sea-ice cover, surface productivity, bottom temperature and other factors. In addition to faunal changes characterizing glacial-interglacial cycles, Arctic sediments contain several unusual faunal events that cannot be explained by orbital-scale sea level and cryospheric changes. One indicator of such events involves the ostracode Rabilimis mirabilis (Brady 1868), a shallow-water species that inhabits continental shelves in the modern Arctic. We conducted studies of the stratigraphic distribution of R. mirabilis in cores from the Northwind, Mendeleev, Lomonosov, and Alpha Ridges; the Siberian and North American (Beaufort Sea) continental margins; and the Lincoln Sea off North Greenland and in the northern Greenland Sherard Osborn Fjord. Evidence from these records suggests that this species occurs as a fossil in deeper water sediment cores on the upper parts of submarine ridges (mainly 700-900 meters water depth, mwd), in significant numbers (from 1%to 50% of total ostracodes) during Marine Isotope Stages (MIS) 5a (125-109 ka), MIS 4 (71-57 ka), and MIS 3 (57-29 ka). Furthermore, it occurs in cores from various depths on the Siberian margin, the Beaufort and Lincoln Seas during MIS 1 (the Holocene, approx. 11-0 ka). These occurrences involve well-preserved, stratigraphically consistent adult and juvenile populations, which are autochthonous in nature and not caused by downslope transport or ice rafting. Based on their age and associated paleoceanographic conditions in the Arctic, we interpret these R. mirabilis events as signifying basin-ward migration during abrupt changes in growth and decay of massive ice shelves and may be useful as biostratigraphic markers.","PeriodicalId":49816,"journal":{"name":"Micropaleontology","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Abrupt Quaternary Ocean-ice Events in the Arctic: Evidence from the Ostracode Rabilimis\",\"authors\":\"T. Cronin, L. Gemery, Baylee M. Olds, A. M. Regnier, R. Poirier, Sienna Sui\",\"doi\":\"10.47894/mpal.68.3.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Arctic Ocean has experienced orbital and millennial-scale climate oscillations over the last 500 kilo-annum (ka) involving massive changes in global sea level and components of the Arctic cryosphere, including sea-ice cover, land-based ice sheets and ice shelves. Although these climate events are only partially understood, micropaleontological studies utilizing ostracodes and benthic foraminifera have demonstrated that major changes in faunas have occurred at different timescales that signify ecosystem regime changes linked to sea-ice cover, surface productivity, bottom temperature and other factors. In addition to faunal changes characterizing glacial-interglacial cycles, Arctic sediments contain several unusual faunal events that cannot be explained by orbital-scale sea level and cryospheric changes. One indicator of such events involves the ostracode Rabilimis mirabilis (Brady 1868), a shallow-water species that inhabits continental shelves in the modern Arctic. We conducted studies of the stratigraphic distribution of R. mirabilis in cores from the Northwind, Mendeleev, Lomonosov, and Alpha Ridges; the Siberian and North American (Beaufort Sea) continental margins; and the Lincoln Sea off North Greenland and in the northern Greenland Sherard Osborn Fjord. Evidence from these records suggests that this species occurs as a fossil in deeper water sediment cores on the upper parts of submarine ridges (mainly 700-900 meters water depth, mwd), in significant numbers (from 1%to 50% of total ostracodes) during Marine Isotope Stages (MIS) 5a (125-109 ka), MIS 4 (71-57 ka), and MIS 3 (57-29 ka). Furthermore, it occurs in cores from various depths on the Siberian margin, the Beaufort and Lincoln Seas during MIS 1 (the Holocene, approx. 11-0 ka). These occurrences involve well-preserved, stratigraphically consistent adult and juvenile populations, which are autochthonous in nature and not caused by downslope transport or ice rafting. Based on their age and associated paleoceanographic conditions in the Arctic, we interpret these R. mirabilis events as signifying basin-ward migration during abrupt changes in growth and decay of massive ice shelves and may be useful as biostratigraphic markers.\",\"PeriodicalId\":49816,\"journal\":{\"name\":\"Micropaleontology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micropaleontology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.47894/mpal.68.3.03\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micropaleontology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.47894/mpal.68.3.03","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

在过去500千万年中,北冰洋经历了轨道和千年尺度的气候振荡,涉及全球海平面和北极冰冻圈组成部分(包括海冰覆盖、陆基冰盖和冰架)的巨大变化。尽管这些气候事件仅被部分理解,但利用介形虫和底栖有孔虫进行的微古生物学研究表明,动物群的重大变化发生在不同的时间尺度上,这表明与海冰覆盖、地表生产力、底部温度和其他因素相关的生态系统制度变化。除了以冰期-间冰期旋回为特征的动物变化外,北极沉积物还包含一些不寻常的动物事件,这些事件无法用轨道尺度的海平面和冰冻圈变化来解释。这些事件的一个标志涉及到介形虫Rabilimis mirabilis (Brady 1868),这是一种生活在现代北极大陆架上的浅水物种。对北风脊、门捷列夫脊、罗蒙诺索夫脊和阿尔法脊的岩心进行了mirabilis的地层分布研究;西伯利亚和北美(波弗特海)大陆边缘;北格陵兰的林肯海和北格陵兰的谢拉德·奥斯本峡湾。这些记录的证据表明,该物种以化石形式出现在海底隆起上部(主要是700-900米水深,mwd)的深水沉积物岩心中,在海洋同位素阶段(MIS) 5a (125-109 ka)、MIS 4 (71-57 ka)和MIS 3 (57-29 ka)中数量显著(占总数的1% - 50%)。此外,它出现在全新世(MIS 1)前后西伯利亚边缘、波弗特海和林肯海不同深度的岩心中。0的比分卡)。这些事件涉及保存完好的、地层上一致的成年和幼年种群,它们本质上是本地的,不是由下坡运输或冰漂流造成的。根据它们的年龄和北极相关的古海洋条件,我们将这些R. mirabilis事件解释为在巨大冰架生长和衰减的突变过程中向盆地迁移的标志,可能是有用的生物地层学标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abrupt Quaternary Ocean-ice Events in the Arctic: Evidence from the Ostracode Rabilimis
The Arctic Ocean has experienced orbital and millennial-scale climate oscillations over the last 500 kilo-annum (ka) involving massive changes in global sea level and components of the Arctic cryosphere, including sea-ice cover, land-based ice sheets and ice shelves. Although these climate events are only partially understood, micropaleontological studies utilizing ostracodes and benthic foraminifera have demonstrated that major changes in faunas have occurred at different timescales that signify ecosystem regime changes linked to sea-ice cover, surface productivity, bottom temperature and other factors. In addition to faunal changes characterizing glacial-interglacial cycles, Arctic sediments contain several unusual faunal events that cannot be explained by orbital-scale sea level and cryospheric changes. One indicator of such events involves the ostracode Rabilimis mirabilis (Brady 1868), a shallow-water species that inhabits continental shelves in the modern Arctic. We conducted studies of the stratigraphic distribution of R. mirabilis in cores from the Northwind, Mendeleev, Lomonosov, and Alpha Ridges; the Siberian and North American (Beaufort Sea) continental margins; and the Lincoln Sea off North Greenland and in the northern Greenland Sherard Osborn Fjord. Evidence from these records suggests that this species occurs as a fossil in deeper water sediment cores on the upper parts of submarine ridges (mainly 700-900 meters water depth, mwd), in significant numbers (from 1%to 50% of total ostracodes) during Marine Isotope Stages (MIS) 5a (125-109 ka), MIS 4 (71-57 ka), and MIS 3 (57-29 ka). Furthermore, it occurs in cores from various depths on the Siberian margin, the Beaufort and Lincoln Seas during MIS 1 (the Holocene, approx. 11-0 ka). These occurrences involve well-preserved, stratigraphically consistent adult and juvenile populations, which are autochthonous in nature and not caused by downslope transport or ice rafting. Based on their age and associated paleoceanographic conditions in the Arctic, we interpret these R. mirabilis events as signifying basin-ward migration during abrupt changes in growth and decay of massive ice shelves and may be useful as biostratigraphic markers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micropaleontology
Micropaleontology 地学-古生物学
CiteScore
3.20
自引率
6.70%
发文量
18
审稿时长
>12 weeks
期刊介绍: The Journal of Micropalaeontology (JM) is an established international journal covering all aspects of microfossils and their application to both applied studies and basic research. In particular we welcome submissions relating to microfossils and their application to palaeoceanography, palaeoclimatology, palaeobiology, evolution, taxonomy, environmental change and molecular phylogeny. Owned by The Micropalaeontological Society, the scope of the journal is broad, demonstrating the application of microfossils to solving broad geoscience issues.
期刊最新文献
Freshwater fishes (Actinopterygii) of Kenyir Reservoir, Peninsular Malaysia: Updated checklist, taxonomic concerns and alien species. Roadian (Earliest Guadalupian, Middle Permian) Radiolarians from the Guadalupe Mountains, West Texas, USA Part III: Latentifistularia Organic-walled marine microplankton from the Hauterivian and early Barremian of the North Sea Region - biostratigraphy and taxonomy Priabonian (upper Eocene) larger foraminifera from the Helvetic Nappes of the Alps (Western Switzerland): new markers for Shallow Benthic zones 19-20 Systematic paleontology and biostratigraphy of upper Eocene larger benthic foraminifera from Fanari (Thrace Basin, Greece)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1