{"title":"基于贝叶斯估计和模糊理论的语音信号噪声抑制方法","authors":"A. Ikuta, H. Orimoto, Kouji Hasegawa","doi":"10.4236/jsea.2021.1412037","DOIUrl":null,"url":null,"abstract":"Speech recognition systems have been applied to inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-writing is difficult. In these actual circumstances, some countermeasure methods for surrounding noise are indispensable. In this study, a new method to remove the noise for actual speech signal was proposed by using Bayesian estimation with the aid of bone-conducted speech and fuzzy theory. More specifically, by introducing Bayes’ theorem based on the observation of air-conducted speech contaminated by surrounding background noise, a new type of algorithm for noise removal was theoretically derived. In the proposed noise suppression method, bone-conducted speech signal with the reduced high-frequency components was regarded as fuzzy observation data, and a stochastic model for the bone-conducted speech was derived by applying the probability measure of fuzzy events. The proposed method was applied to speech signals measured in real environment with low SNR, and better results were obtained than an algorithm based on observation of only air-conducted speech.","PeriodicalId":62222,"journal":{"name":"软件工程与应用(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Noise Suppression Method for Speech Signal by Jointly Using Bayesian Estimation and Fuzzy Theory\",\"authors\":\"A. Ikuta, H. Orimoto, Kouji Hasegawa\",\"doi\":\"10.4236/jsea.2021.1412037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech recognition systems have been applied to inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-writing is difficult. In these actual circumstances, some countermeasure methods for surrounding noise are indispensable. In this study, a new method to remove the noise for actual speech signal was proposed by using Bayesian estimation with the aid of bone-conducted speech and fuzzy theory. More specifically, by introducing Bayes’ theorem based on the observation of air-conducted speech contaminated by surrounding background noise, a new type of algorithm for noise removal was theoretically derived. In the proposed noise suppression method, bone-conducted speech signal with the reduced high-frequency components was regarded as fuzzy observation data, and a stochastic model for the bone-conducted speech was derived by applying the probability measure of fuzzy events. The proposed method was applied to speech signals measured in real environment with low SNR, and better results were obtained than an algorithm based on observation of only air-conducted speech.\",\"PeriodicalId\":62222,\"journal\":{\"name\":\"软件工程与应用(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"软件工程与应用(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/jsea.2021.1412037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"软件工程与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jsea.2021.1412037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Noise Suppression Method for Speech Signal by Jointly Using Bayesian Estimation and Fuzzy Theory
Speech recognition systems have been applied to inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-writing is difficult. In these actual circumstances, some countermeasure methods for surrounding noise are indispensable. In this study, a new method to remove the noise for actual speech signal was proposed by using Bayesian estimation with the aid of bone-conducted speech and fuzzy theory. More specifically, by introducing Bayes’ theorem based on the observation of air-conducted speech contaminated by surrounding background noise, a new type of algorithm for noise removal was theoretically derived. In the proposed noise suppression method, bone-conducted speech signal with the reduced high-frequency components was regarded as fuzzy observation data, and a stochastic model for the bone-conducted speech was derived by applying the probability measure of fuzzy events. The proposed method was applied to speech signals measured in real environment with low SNR, and better results were obtained than an algorithm based on observation of only air-conducted speech.