基于GoogLeNet和残差神经网络ResNet的改进模型

Pub Date : 2022-01-01 DOI:10.4018/ijcini.313442
Xuehua Huang
{"title":"基于GoogLeNet和残差神经网络ResNet的改进模型","authors":"Xuehua Huang","doi":"10.4018/ijcini.313442","DOIUrl":null,"url":null,"abstract":"To improve the accuracy of image classification, a kind of improved model is proposed. The shortcut is added to GoogLeNet inception v1 and several other ways of shortcut are given, and they are GRSN1_2, GRSN1_3, GRSN1_4. Among them, the information of the input layer is directly output to each subsequent layer in the form of shortcut. The new improved model has the advantages of multi-size and small convolution kernel in the same layer in the network and the advantages of shortcut to reduce information loss. Meanwhile, as the number of inception blocks increases, the number of channels is increased to deepen the extraction of information. The GRSN, GRSN1_2, GRSN1_3, GRSN1_4, GoogLeNet, and ResNet models were compared on cifar10, cifar100, and mnist datasets. The experimental results show that the proposed model has 3.07% improved to ResNet on data set cifar10, 2.08% on data set cifar100, 17.69% improved to GoogLeNet on data set cifar10, 28.47% on data set cifar100.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved Model Based on GoogLeNet and Residual Neural Network ResNet\",\"authors\":\"Xuehua Huang\",\"doi\":\"10.4018/ijcini.313442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the accuracy of image classification, a kind of improved model is proposed. The shortcut is added to GoogLeNet inception v1 and several other ways of shortcut are given, and they are GRSN1_2, GRSN1_3, GRSN1_4. Among them, the information of the input layer is directly output to each subsequent layer in the form of shortcut. The new improved model has the advantages of multi-size and small convolution kernel in the same layer in the network and the advantages of shortcut to reduce information loss. Meanwhile, as the number of inception blocks increases, the number of channels is increased to deepen the extraction of information. The GRSN, GRSN1_2, GRSN1_3, GRSN1_4, GoogLeNet, and ResNet models were compared on cifar10, cifar100, and mnist datasets. The experimental results show that the proposed model has 3.07% improved to ResNet on data set cifar10, 2.08% on data set cifar100, 17.69% improved to GoogLeNet on data set cifar10, 28.47% on data set cifar100.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.313442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.313442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高图像分类的精度,提出了一种改进模型。在GoogLeNet inception v1中增加了快捷方式,并给出了其他几种快捷方式,分别是GRSN1_2、GRSN1_3、GRSN1_4。其中,输入层的信息以快捷方式直接输出到后续各层。新的改进模型具有网络中同层的多尺寸和小卷积核的优点,并且具有减少信息损失的捷径的优点。同时,随着初始块数量的增加,通道数量也在增加,以加深信息的提取。在cifar10、cifar100和mnist数据集上比较了GRSN、GRSN1_2、GRSN1_3、GRSN1_4、GoogLeNet和ResNet模型。实验结果表明,该模型在数据集cifar10上比ResNet提高了3.07%,在数据集cifar100上比GoogLeNet提高了2.08%,在数据集cifar10上比GoogLeNet提高了17.69%,在数据集cifar100上比GoogLeNet提高了28.47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Improved Model Based on GoogLeNet and Residual Neural Network ResNet
To improve the accuracy of image classification, a kind of improved model is proposed. The shortcut is added to GoogLeNet inception v1 and several other ways of shortcut are given, and they are GRSN1_2, GRSN1_3, GRSN1_4. Among them, the information of the input layer is directly output to each subsequent layer in the form of shortcut. The new improved model has the advantages of multi-size and small convolution kernel in the same layer in the network and the advantages of shortcut to reduce information loss. Meanwhile, as the number of inception blocks increases, the number of channels is increased to deepen the extraction of information. The GRSN, GRSN1_2, GRSN1_3, GRSN1_4, GoogLeNet, and ResNet models were compared on cifar10, cifar100, and mnist datasets. The experimental results show that the proposed model has 3.07% improved to ResNet on data set cifar10, 2.08% on data set cifar100, 17.69% improved to GoogLeNet on data set cifar10, 28.47% on data set cifar100.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1