人事选择过程中的人与算法决策:关于偏差的比较文献计量学

IF 1.6 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE COLLNET Journal of Scientometrics and Information Management Pub Date : 2023-01-01 DOI:10.47974/cjsim-2022-0063
Humberta Karinne Da Conceição Santos Silva, L. Vasconcellos
{"title":"人事选择过程中的人与算法决策:关于偏差的比较文献计量学","authors":"Humberta Karinne Da Conceição Santos Silva, L. Vasconcellos","doi":"10.47974/cjsim-2022-0063","DOIUrl":null,"url":null,"abstract":"This article examines, with bibliometrics, the publication on bias in organizations’ personnel selection processes, whether they use automated decision-making systems or human-made decisions. While human bias is dynamic, restricted, mutate, and easier to determine the source; algorithmic bias is large-scale, static, and unpredictable. Despite the apparent discrepancy, there is a symbiotic relationship between those two, but somehow only one of them is getting any attention regarding the consequences of fairness on personnel selection and how this influences organizational diversity. So, looking for a better understanding of organizational behaviour, we conduct a bibliometric review to mappings the relations of these two. Here we reviewed 55 articles from the Web of Science Core Collection, from the earliest research published in 1979 to 2021. Only papers of the document type “article” was considered. The tool used for bibliometric data analysis were bibliometrix packages from the RStudio system version 3.6.3. According to our review, the number of studies on the subject is still tiny, and most of them were conducted under controlled conditions without considering the error agent of an organizational environment such as time, organizational culture, and the emotions of the recruiter; this makes it impossible to develop practices to avoid discrimination in these spaces. Concerning the theme, studies on human bias are the most common, with a focus on gender bias, and have recently adopted diversity. Hardly studies on algorithm decision-making consider the process’s fairness as a topic for investigation. However, neither study demonstrates a correlation or systematic approach between them. More interdisciplinary and empirical research should be the focus of future studies.","PeriodicalId":10501,"journal":{"name":"COLLNET Journal of Scientometrics and Information Management","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human and algorithmic decision-making in the personnel selection process: A comparative bibliometric on bias\",\"authors\":\"Humberta Karinne Da Conceição Santos Silva, L. Vasconcellos\",\"doi\":\"10.47974/cjsim-2022-0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article examines, with bibliometrics, the publication on bias in organizations’ personnel selection processes, whether they use automated decision-making systems or human-made decisions. While human bias is dynamic, restricted, mutate, and easier to determine the source; algorithmic bias is large-scale, static, and unpredictable. Despite the apparent discrepancy, there is a symbiotic relationship between those two, but somehow only one of them is getting any attention regarding the consequences of fairness on personnel selection and how this influences organizational diversity. So, looking for a better understanding of organizational behaviour, we conduct a bibliometric review to mappings the relations of these two. Here we reviewed 55 articles from the Web of Science Core Collection, from the earliest research published in 1979 to 2021. Only papers of the document type “article” was considered. The tool used for bibliometric data analysis were bibliometrix packages from the RStudio system version 3.6.3. According to our review, the number of studies on the subject is still tiny, and most of them were conducted under controlled conditions without considering the error agent of an organizational environment such as time, organizational culture, and the emotions of the recruiter; this makes it impossible to develop practices to avoid discrimination in these spaces. Concerning the theme, studies on human bias are the most common, with a focus on gender bias, and have recently adopted diversity. Hardly studies on algorithm decision-making consider the process’s fairness as a topic for investigation. However, neither study demonstrates a correlation or systematic approach between them. More interdisciplinary and empirical research should be the focus of future studies.\",\"PeriodicalId\":10501,\"journal\":{\"name\":\"COLLNET Journal of Scientometrics and Information Management\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"COLLNET Journal of Scientometrics and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47974/cjsim-2022-0063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"COLLNET Journal of Scientometrics and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/cjsim-2022-0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文通过文献计量学研究了组织人员选择过程中的偏见,无论他们是使用自动决策系统还是人为决策。虽然人类的偏见是动态的、受限制的、变异的,而且更容易确定来源;算法偏差是大规模的、静态的、不可预测的。尽管存在明显的差异,但这两者之间存在共生关系,但不知何故,只有其中一个在人员选择的公平性后果以及这如何影响组织多样性方面得到了关注。因此,为了更好地理解组织行为,我们进行了文献计量审查,以映射这两者的关系。在这里,我们回顾了来自Web of Science核心合集的55篇文章,从1979年最早发表的研究到2021年。只审议文件类型为“文章”的文件。用于文献计量数据分析的工具是来自RStudio系统版本3.6.3的bibliometrix包。根据我们的回顾,关于这一主题的研究数量仍然很少,而且大多数研究都是在受控条件下进行的,没有考虑组织环境的误差因素,如时间、组织文化和招聘人员的情绪;这使得在这些空间中不可能制定避免歧视的做法。关于这一主题,对人类偏见的研究最为常见,主要集中在性别偏见上,并且最近采取了多样性的研究。在算法决策研究中,很少把过程的公平性作为一个研究课题。然而,这两项研究都没有证明它们之间存在相关性或系统方法。更多的跨学科和实证研究应成为未来研究的重点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human and algorithmic decision-making in the personnel selection process: A comparative bibliometric on bias
This article examines, with bibliometrics, the publication on bias in organizations’ personnel selection processes, whether they use automated decision-making systems or human-made decisions. While human bias is dynamic, restricted, mutate, and easier to determine the source; algorithmic bias is large-scale, static, and unpredictable. Despite the apparent discrepancy, there is a symbiotic relationship between those two, but somehow only one of them is getting any attention regarding the consequences of fairness on personnel selection and how this influences organizational diversity. So, looking for a better understanding of organizational behaviour, we conduct a bibliometric review to mappings the relations of these two. Here we reviewed 55 articles from the Web of Science Core Collection, from the earliest research published in 1979 to 2021. Only papers of the document type “article” was considered. The tool used for bibliometric data analysis were bibliometrix packages from the RStudio system version 3.6.3. According to our review, the number of studies on the subject is still tiny, and most of them were conducted under controlled conditions without considering the error agent of an organizational environment such as time, organizational culture, and the emotions of the recruiter; this makes it impossible to develop practices to avoid discrimination in these spaces. Concerning the theme, studies on human bias are the most common, with a focus on gender bias, and have recently adopted diversity. Hardly studies on algorithm decision-making consider the process’s fairness as a topic for investigation. However, neither study demonstrates a correlation or systematic approach between them. More interdisciplinary and empirical research should be the focus of future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
COLLNET Journal of Scientometrics and Information Management
COLLNET Journal of Scientometrics and Information Management INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
0.00%
发文量
11
期刊最新文献
Mapping of top papers in the subject category of Soil Science Mapping global research on expert systems Research trends in the field of natural language processing : A scientometric study based on global publications during 2001-2020 Classic articles in cervical cancer research : A bibliometric analysis Human and algorithmic decision-making in the personnel selection process: A comparative bibliometric on bias
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1