{"title":"生化测试和机器学习技术在肝脏疾病诊断和评估中的应用","authors":"S. Akter, H. Shekhar, S. Akhteruzzaman","doi":"10.4236/abb.2021.126011","DOIUrl":null,"url":null,"abstract":"Background: The liver function tests (LFTs) remain one of the most commonly employed clinical measures for the diagnosis of hepatobiliary disease. LFTs sometimes referred to as hepatic panel help to determine the health of liver, monitor the progression of a disease and measure the severity of a disease particularly scarring or cirrhosis of the liver. Aims: In this study, we present a new approach to evaluate the natural progression of liver disease through the assessment of eight biochemical parameters: serum total bilirubin (TB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), Alkaline phosphatase (ALP), total protein (TP), albumin (ALB), albumin/globulin (A/G) ratio, and alpha-fetoprotein (AFP) as well as two machine learning (ML) tools—Random Forest and CART to substantive the outcome. Methods: The study was carried out in a total of 100 subjects which included healthy controls (group I-25 patients), patients with acute hepatitis (group II-25 patients), chronic hepatitis (group III-25 patients) and hepatocellular carcinoma (group IV-25 patients) applying both biochemical and Machine Learning methods. Results: Of the eight parameters tested, all except ALP (p = 0.426), showed an overall discriminatory ability as judged by one-factor analysis of variance (p Conclusion: Acute hepatitis (group II) shows a higher level of AST, ALT and ALP compared to chronic hepatitis (group III) and hepatocellular carcinoma (group IV). Two machine learning algorithms also predicted and supported the same biochemical results by correctly classifying liver disease patients. We also recommend that the AFP test can be performed if hepatocellular carcinoma is suspected.","PeriodicalId":65405,"journal":{"name":"生命科学与技术进展(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Application of Biochemical Tests and Machine Learning Techniques to Diagnose and Evaluate Liver Disease\",\"authors\":\"S. Akter, H. Shekhar, S. Akhteruzzaman\",\"doi\":\"10.4236/abb.2021.126011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The liver function tests (LFTs) remain one of the most commonly employed clinical measures for the diagnosis of hepatobiliary disease. LFTs sometimes referred to as hepatic panel help to determine the health of liver, monitor the progression of a disease and measure the severity of a disease particularly scarring or cirrhosis of the liver. Aims: In this study, we present a new approach to evaluate the natural progression of liver disease through the assessment of eight biochemical parameters: serum total bilirubin (TB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), Alkaline phosphatase (ALP), total protein (TP), albumin (ALB), albumin/globulin (A/G) ratio, and alpha-fetoprotein (AFP) as well as two machine learning (ML) tools—Random Forest and CART to substantive the outcome. Methods: The study was carried out in a total of 100 subjects which included healthy controls (group I-25 patients), patients with acute hepatitis (group II-25 patients), chronic hepatitis (group III-25 patients) and hepatocellular carcinoma (group IV-25 patients) applying both biochemical and Machine Learning methods. Results: Of the eight parameters tested, all except ALP (p = 0.426), showed an overall discriminatory ability as judged by one-factor analysis of variance (p Conclusion: Acute hepatitis (group II) shows a higher level of AST, ALT and ALP compared to chronic hepatitis (group III) and hepatocellular carcinoma (group IV). Two machine learning algorithms also predicted and supported the same biochemical results by correctly classifying liver disease patients. We also recommend that the AFP test can be performed if hepatocellular carcinoma is suspected.\",\"PeriodicalId\":65405,\"journal\":{\"name\":\"生命科学与技术进展(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生命科学与技术进展(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/abb.2021.126011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生命科学与技术进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/abb.2021.126011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Biochemical Tests and Machine Learning Techniques to Diagnose and Evaluate Liver Disease
Background: The liver function tests (LFTs) remain one of the most commonly employed clinical measures for the diagnosis of hepatobiliary disease. LFTs sometimes referred to as hepatic panel help to determine the health of liver, monitor the progression of a disease and measure the severity of a disease particularly scarring or cirrhosis of the liver. Aims: In this study, we present a new approach to evaluate the natural progression of liver disease through the assessment of eight biochemical parameters: serum total bilirubin (TB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), Alkaline phosphatase (ALP), total protein (TP), albumin (ALB), albumin/globulin (A/G) ratio, and alpha-fetoprotein (AFP) as well as two machine learning (ML) tools—Random Forest and CART to substantive the outcome. Methods: The study was carried out in a total of 100 subjects which included healthy controls (group I-25 patients), patients with acute hepatitis (group II-25 patients), chronic hepatitis (group III-25 patients) and hepatocellular carcinoma (group IV-25 patients) applying both biochemical and Machine Learning methods. Results: Of the eight parameters tested, all except ALP (p = 0.426), showed an overall discriminatory ability as judged by one-factor analysis of variance (p Conclusion: Acute hepatitis (group II) shows a higher level of AST, ALT and ALP compared to chronic hepatitis (group III) and hepatocellular carcinoma (group IV). Two machine learning algorithms also predicted and supported the same biochemical results by correctly classifying liver disease patients. We also recommend that the AFP test can be performed if hepatocellular carcinoma is suspected.