参数脆弱性模型中的Lasso估计

IF 1.1 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES Pub Date : 2023-01-01 DOI:10.47974/jios-1291
Anu Sirohi, Prem Shenkar Jha
{"title":"参数脆弱性模型中的Lasso估计","authors":"Anu Sirohi, Prem Shenkar Jha","doi":"10.47974/jios-1291","DOIUrl":null,"url":null,"abstract":"This paper proposed lasso estimator in parametric frailty model. Comparison of lasso (least absolute shrinkage and selection operator) and maximum likelihood (ML) estimator is done in terms of scalar mean square error (MSE). Performance of lasso estimator is examined through simulation study. Furthermore, approach is applied to analyze infant mortality in India.","PeriodicalId":46518,"journal":{"name":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lasso estimation in parametric frailty model\",\"authors\":\"Anu Sirohi, Prem Shenkar Jha\",\"doi\":\"10.47974/jios-1291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed lasso estimator in parametric frailty model. Comparison of lasso (least absolute shrinkage and selection operator) and maximum likelihood (ML) estimator is done in terms of scalar mean square error (MSE). Performance of lasso estimator is examined through simulation study. Furthermore, approach is applied to analyze infant mortality in India.\",\"PeriodicalId\":46518,\"journal\":{\"name\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47974/jios-1291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47974/jios-1291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

提出了参数脆性模型中的lasso估计。lasso(最小绝对收缩和选择算子)和最大似然(ML)估计器在标量均方误差(MSE)方面进行了比较。通过仿真研究验证了套索估计器的性能。此外,还应用该方法分析了印度的婴儿死亡率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lasso estimation in parametric frailty model
This paper proposed lasso estimator in parametric frailty model. Comparison of lasso (least absolute shrinkage and selection operator) and maximum likelihood (ML) estimator is done in terms of scalar mean square error (MSE). Performance of lasso estimator is examined through simulation study. Furthermore, approach is applied to analyze infant mortality in India.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES INFORMATION SCIENCE & LIBRARY SCIENCE-
自引率
21.40%
发文量
88
期刊最新文献
Paediatric liver biopsies: A single-centre experience in Erzincan Binali Yıldırım University. An approach to fuzzy transportation problem using Triacontakaidigon fuzzy number with alpha cut ranking technique Credit strategy of micro, small, and medium enterprises with known reputation risk: Evidence from a comprehensive evaluation model Some results on the open subset intersection graph of a product topological space Deep learning for automatic identification of plants through leaf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1