A. Anagnostopoulos, C. Dombry, N. Guillotin-Plantard, I. Kontoyiannis, E. Upfal
{"title":"圆上$k$-Server问题的随机分析","authors":"A. Anagnostopoulos, C. Dombry, N. Guillotin-Plantard, I. Kontoyiannis, E. Upfal","doi":"10.46298/DMTCS.2791","DOIUrl":null,"url":null,"abstract":"We consider a stochastic version of the $k$-server problem in which $k$ servers move on a circle to satisfy stochastically generated requests. The requests are independent and identically distributed according to an arbitrary distribution on a circle, which is either discrete or continuous. The cost of serving a request is the distance that a server needs to move to reach the request. The goal is to minimize the steady-state expected cost induced by the requests. We study the performance of a greedy strategy, focusing, in particular, on its convergence properties and the interplay between the discrete and continuous versions of the process.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stochastic Analysis of the $k$-Server Problem on the Circle\",\"authors\":\"A. Anagnostopoulos, C. Dombry, N. Guillotin-Plantard, I. Kontoyiannis, E. Upfal\",\"doi\":\"10.46298/DMTCS.2791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a stochastic version of the $k$-server problem in which $k$ servers move on a circle to satisfy stochastically generated requests. The requests are independent and identically distributed according to an arbitrary distribution on a circle, which is either discrete or continuous. The cost of serving a request is the distance that a server needs to move to reach the request. The goal is to minimize the steady-state expected cost induced by the requests. We study the performance of a greedy strategy, focusing, in particular, on its convergence properties and the interplay between the discrete and continuous versions of the process.\",\"PeriodicalId\":55175,\"journal\":{\"name\":\"Discrete Mathematics and Theoretical Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Theoretical Computer Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.46298/DMTCS.2791\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.46298/DMTCS.2791","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic Analysis of the $k$-Server Problem on the Circle
We consider a stochastic version of the $k$-server problem in which $k$ servers move on a circle to satisfy stochastically generated requests. The requests are independent and identically distributed according to an arbitrary distribution on a circle, which is either discrete or continuous. The cost of serving a request is the distance that a server needs to move to reach the request. The goal is to minimize the steady-state expected cost induced by the requests. We study the performance of a greedy strategy, focusing, in particular, on its convergence properties and the interplay between the discrete and continuous versions of the process.
期刊介绍:
DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network.
Sections of DMTCS
Analysis of Algorithms
Automata, Logic and Semantics
Combinatorics
Discrete Algorithms
Distributed Computing and Networking
Graph Theory.