{"title":"新型铝配合物(C8H9N2)3[Al(C2O4)3]3H2O的合成、结构、光谱、热、光学研究及Hirshfeld表面分析","authors":"Amal Arouri, R. Dridi, L. Jouffret, M. Zid","doi":"10.4236/csta.2019.83003","DOIUrl":null,"url":null,"abstract":"The compound, tris-(5-methylbenzimidazole) tris-(oxalato)-aluminate (III) trihydrate, (C8H9N2)3[Al(C2O4)3]∙3H2O, was synthesized by slow evaporation at room temperature and characterized by single crystal X-ray diffraction and X-ray powder diffraction, infrared (IR), ultraviolet (UV-visible) spectroscopies, and thermal analysis. The results show that this complex crystallizes in the monoclinic system, space group P21/c, with the mesh parameters a = 13.499(7) Å, b = 14.872(9) Å, c = 16.995(5) Å, ß = 91.44(3) ̊, V = 3411(3) Å and Z = 4. The formula unit is composed of tris-(oxalato)-aluminate [Al(C2O4)3] anions, tris-(5-methylbenzimidazole) cations and three uncoordinated water molecules. The geometry of the aluminum ion is octahedral, formed by six oxygen atoms belonging to three oxalate anions serving as chelating ligands. Cohesion of the structure is ensured by intermolecular hydrogen bonds of O-H...O, N-H...O type linking ionic entities and water molecules as well as by π-π and π-π* between cycles of 5-methylbenzimidazole cations. In order to clarify the intermolecular interactions formed by the organic cations and inorganic anions, an analysis of the calculated Hirshfeld surfaces was used. The UV-Vis spectrum reveals an optical band gap width of 2.88 eV, which shows that this compound has a semiconductor material behavior.","PeriodicalId":67661,"journal":{"name":"晶体结构理论与应用(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Structural, Spectroscopic, Thermal, Optical Studies and Hirshfeld Surface Analysis of a New Aluminum Complex: (C<sub>8</sub>H<sub>9</sub>N<sub>2</sub>)<sub>3</sub>[Al(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>]3H<sub>2</sub>O\",\"authors\":\"Amal Arouri, R. Dridi, L. Jouffret, M. Zid\",\"doi\":\"10.4236/csta.2019.83003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The compound, tris-(5-methylbenzimidazole) tris-(oxalato)-aluminate (III) trihydrate, (C8H9N2)3[Al(C2O4)3]∙3H2O, was synthesized by slow evaporation at room temperature and characterized by single crystal X-ray diffraction and X-ray powder diffraction, infrared (IR), ultraviolet (UV-visible) spectroscopies, and thermal analysis. The results show that this complex crystallizes in the monoclinic system, space group P21/c, with the mesh parameters a = 13.499(7) Å, b = 14.872(9) Å, c = 16.995(5) Å, ß = 91.44(3) ̊, V = 3411(3) Å and Z = 4. The formula unit is composed of tris-(oxalato)-aluminate [Al(C2O4)3] anions, tris-(5-methylbenzimidazole) cations and three uncoordinated water molecules. The geometry of the aluminum ion is octahedral, formed by six oxygen atoms belonging to three oxalate anions serving as chelating ligands. Cohesion of the structure is ensured by intermolecular hydrogen bonds of O-H...O, N-H...O type linking ionic entities and water molecules as well as by π-π and π-π* between cycles of 5-methylbenzimidazole cations. In order to clarify the intermolecular interactions formed by the organic cations and inorganic anions, an analysis of the calculated Hirshfeld surfaces was used. The UV-Vis spectrum reveals an optical band gap width of 2.88 eV, which shows that this compound has a semiconductor material behavior.\",\"PeriodicalId\":67661,\"journal\":{\"name\":\"晶体结构理论与应用(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"晶体结构理论与应用(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/csta.2019.83003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"晶体结构理论与应用(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/csta.2019.83003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
采用室温慢蒸发法制备了化合物(C8H9N2)3[Al(C2O4)3]∙3H2O,并用单晶x射线衍射、x射线粉末衍射、红外(IR)、紫外(uv -可见)光谱和热分析对化合物进行了表征。结果表明,该配合物在单斜晶系P21/c空间群中结晶,其网格参数为a = 13.499(7) Å, b = 14.872(9) Å, c = 16.995(5) Å, ß = 91.44(3)∶∶V = 3411(3)∶Å, Z = 4。该分子式单元由三(草酸)-铝酸盐[Al(C2O4)3]阴离子、三(5-甲基苯并咪唑)阳离子和三个不配位水分子组成。铝离子的几何形状为八面体,由三个草酸阴离子的六个氧原子组成,作为螯合配体。分子间氢键保证了结构的内聚性。O - h……O型连接离子实体和水分子,以及在5-甲基苯并咪唑阳离子环之间的π-π和π-π*。为了阐明有机阳离子和无机阴离子形成的分子间相互作用,对计算的赫希菲尔德表面进行了分析。紫外可见光谱显示该化合物的光学带隙宽度为2.88 eV,表明该化合物具有半导体材料的特性。
Synthesis, Structural, Spectroscopic, Thermal, Optical Studies and Hirshfeld Surface Analysis of a New Aluminum Complex: (C8H9N2)3[Al(C2O4)3]3H2O
The compound, tris-(5-methylbenzimidazole) tris-(oxalato)-aluminate (III) trihydrate, (C8H9N2)3[Al(C2O4)3]∙3H2O, was synthesized by slow evaporation at room temperature and characterized by single crystal X-ray diffraction and X-ray powder diffraction, infrared (IR), ultraviolet (UV-visible) spectroscopies, and thermal analysis. The results show that this complex crystallizes in the monoclinic system, space group P21/c, with the mesh parameters a = 13.499(7) Å, b = 14.872(9) Å, c = 16.995(5) Å, ß = 91.44(3) ̊, V = 3411(3) Å and Z = 4. The formula unit is composed of tris-(oxalato)-aluminate [Al(C2O4)3] anions, tris-(5-methylbenzimidazole) cations and three uncoordinated water molecules. The geometry of the aluminum ion is octahedral, formed by six oxygen atoms belonging to three oxalate anions serving as chelating ligands. Cohesion of the structure is ensured by intermolecular hydrogen bonds of O-H...O, N-H...O type linking ionic entities and water molecules as well as by π-π and π-π* between cycles of 5-methylbenzimidazole cations. In order to clarify the intermolecular interactions formed by the organic cations and inorganic anions, an analysis of the calculated Hirshfeld surfaces was used. The UV-Vis spectrum reveals an optical band gap width of 2.88 eV, which shows that this compound has a semiconductor material behavior.