离子晶体、双面心立方晶体和类金刚石晶体中单键共价键的奇偶电子规则和等电子规则

G. Auvert, M. Auvert
{"title":"离子晶体、双面心立方晶体和类金刚石晶体中单键共价键的奇偶电子规则和等电子规则","authors":"G. Auvert, M. Auvert","doi":"10.4236/OJPC.2016.62002","DOIUrl":null,"url":null,"abstract":"Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures; single covalent structures can be used in every case instead of the classical ionic model; covalent bonds and charges positions do not have any relation with the valence number given in the periodic table.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Even-Odd and the Isoelectronicity Rules Applied to Single Covalent Bonds in Ionic, Double-Face-Centered Cubic and Diamond-Like Crystals\",\"authors\":\"G. Auvert, M. Auvert\",\"doi\":\"10.4236/OJPC.2016.62002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures; single covalent structures can be used in every case instead of the classical ionic model; covalent bonds and charges positions do not have any relation with the valence number given in the periodic table.\",\"PeriodicalId\":59839,\"journal\":{\"name\":\"物理化学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJPC.2016.62002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJPC.2016.62002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

尽管借助成像技术可以精确地了解晶体中的原子结构,但没有实验方法可以知道键或电荷的确切位置。人们提出了许多不同的表述,但没有一个理论可以统一这些概念。本文描述了利用在以前的工作中引入的两种新规则:奇偶规则和等电子规则,推导每单元细胞有4个和6个原子的双面中心立方晶体的键和电荷位置的方法。这两个规则以前都应用于离子、分子和一些固体,偶奇规则也在两种共价晶体结构上进行了测试:中心立方晶体和单面中心立方晶体。在本研究中,为了推导出锌-闪锌矿结构,对类金刚石结构采用等电子规则。使用这两种规则,岩盐状晶体彼此衍生。这些结构代表了230多种不同的晶体。这些结构的发现有三个方面:两个规则都描述了一种非常确定的方法来获得有效的单共价键结构;单共价结构可以在任何情况下使用,而不是经典的离子模型;共价键和电荷位置与元素周期表中给出的价数没有任何关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Even-Odd and the Isoelectronicity Rules Applied to Single Covalent Bonds in Ionic, Double-Face-Centered Cubic and Diamond-Like Crystals
Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures; single covalent structures can be used in every case instead of the classical ionic model; covalent bonds and charges positions do not have any relation with the valence number given in the periodic table.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
133
期刊最新文献
Evaluation of Physicochemical Parameters of Biosorbents Produced from Groundnut Hull Using Microwave Assisted Irradiation Method Fabrication and Characterization of Lanthanide-TiO2 Nanotube Composites Synthesis, Characterization and Biological Activity Evaluation of Schiff Bases Derived from 1,8-Diaminonaphtalène Combining Experimental and Quantum Chemical Study of 2-(5-Nitro-1,3-Dihydro Benzimidazol-2-Ylidene)-3-Oxo-3-(2-Oxo-2H-Chromen-3-yl) Propanenitrile as Copper Corrosion Inhibitor in Nitric Acid Solution Stability in Liquid Phases of Molecular Compounds Composed of Saturated Atoms: Application with the Even-Odd Rule and a Specific Periodic Table for Liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1