{"title":"相位热带超曲面的自然拓扑流形结构","authors":"Young Rock Kim, Mounir Nisse","doi":"10.4134/JKMS.J200132","DOIUrl":null,"url":null,"abstract":"First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (C∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin’s decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A natural topological manifold structure of phase tropical hypersurfaces\",\"authors\":\"Young Rock Kim, Mounir Nisse\",\"doi\":\"10.4134/JKMS.J200132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (C∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin’s decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J200132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J200132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A natural topological manifold structure of phase tropical hypersurfaces
First, we define phase tropical hypersurfaces in terms of a degeneration data of smooth complex algebraic hypersurfaces in (C∗)n. Next, we prove that complex hyperplanes are homeomorphic to their degeneration called phase tropical hyperplanes. More generally, using Mikhalkin’s decomposition into pairs-of-pants of smooth algebraic hypersurfaces, we show that a phase tropical hypersurface with smooth tropicalization is naturally a topological manifold. Moreover, we prove that a phase tropical hypersurface is naturally homeomorphic to a symplectic manifold.