{"title":"由核碱基组成的生物有机金属配合物的功能组织","authors":"T. Moriuchi","doi":"10.4019/BJSCC.70.22","DOIUrl":null,"url":null,"abstract":"In this account, recent advances in the design of bioorganometallic complexes by the conjugation of organometallic complexes with nucleobases are focused on to exhibit specific properties based on functional organization. A guanosine-based Au(I) bioorganometallic complex is demonstrated to serve as the reliable G-octamer scaffold via self-organization, showing a switchable emission based on aurophilic Au(I)-Au(I) interaction. The formation of the empty quartet, octamer, and polymeric columnar aggregate is able to be controlled by the amount of potassium ion. The tuning of the emission properties of the bioorganometallic platinum(II) complexes bearing a uracil moiety is also achieved by changing the direction of hydrogen bonding sites and the molecular scaffold having complementary hydrogen bonding sites for the uracil moiety. The semirigid bridging diphosphine ligand is performed to be a key factor in the arrangement of the phosphorus atoms on the same side to induce intramolecular Au(I)-Au(I) interaction, wherein R - and S -enantiomers based on Au(I)-Au(I) axis exist. It is noteworthy that the chirality of Au(I)-Au(I) axis is induced by the utilization of ( R )-BINAP as the axially chiral bridging diphosphine ligand. Another interesting feature of bioorganometallic complexes is their strong tendency to self-assemble through intermolecular hydrogen bonds between their nucleobase moieties.","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":"70 1","pages":"22-31"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4019/BJSCC.70.22","citationCount":"0","resultStr":"{\"title\":\"Functional Organization of Bioorganometallic Complexes Composed of Nucleobases\",\"authors\":\"T. Moriuchi\",\"doi\":\"10.4019/BJSCC.70.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this account, recent advances in the design of bioorganometallic complexes by the conjugation of organometallic complexes with nucleobases are focused on to exhibit specific properties based on functional organization. A guanosine-based Au(I) bioorganometallic complex is demonstrated to serve as the reliable G-octamer scaffold via self-organization, showing a switchable emission based on aurophilic Au(I)-Au(I) interaction. The formation of the empty quartet, octamer, and polymeric columnar aggregate is able to be controlled by the amount of potassium ion. The tuning of the emission properties of the bioorganometallic platinum(II) complexes bearing a uracil moiety is also achieved by changing the direction of hydrogen bonding sites and the molecular scaffold having complementary hydrogen bonding sites for the uracil moiety. The semirigid bridging diphosphine ligand is performed to be a key factor in the arrangement of the phosphorus atoms on the same side to induce intramolecular Au(I)-Au(I) interaction, wherein R - and S -enantiomers based on Au(I)-Au(I) axis exist. It is noteworthy that the chirality of Au(I)-Au(I) axis is induced by the utilization of ( R )-BINAP as the axially chiral bridging diphosphine ligand. Another interesting feature of bioorganometallic complexes is their strong tendency to self-assemble through intermolecular hydrogen bonds between their nucleobase moieties.\",\"PeriodicalId\":72479,\"journal\":{\"name\":\"Bulletin of Japan Society of Coordination Chemistry\",\"volume\":\"70 1\",\"pages\":\"22-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4019/BJSCC.70.22\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Japan Society of Coordination Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4019/BJSCC.70.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Japan Society of Coordination Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4019/BJSCC.70.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functional Organization of Bioorganometallic Complexes Composed of Nucleobases
In this account, recent advances in the design of bioorganometallic complexes by the conjugation of organometallic complexes with nucleobases are focused on to exhibit specific properties based on functional organization. A guanosine-based Au(I) bioorganometallic complex is demonstrated to serve as the reliable G-octamer scaffold via self-organization, showing a switchable emission based on aurophilic Au(I)-Au(I) interaction. The formation of the empty quartet, octamer, and polymeric columnar aggregate is able to be controlled by the amount of potassium ion. The tuning of the emission properties of the bioorganometallic platinum(II) complexes bearing a uracil moiety is also achieved by changing the direction of hydrogen bonding sites and the molecular scaffold having complementary hydrogen bonding sites for the uracil moiety. The semirigid bridging diphosphine ligand is performed to be a key factor in the arrangement of the phosphorus atoms on the same side to induce intramolecular Au(I)-Au(I) interaction, wherein R - and S -enantiomers based on Au(I)-Au(I) axis exist. It is noteworthy that the chirality of Au(I)-Au(I) axis is induced by the utilization of ( R )-BINAP as the axially chiral bridging diphosphine ligand. Another interesting feature of bioorganometallic complexes is their strong tendency to self-assemble through intermolecular hydrogen bonds between their nucleobase moieties.